Chapter 19

Confidence intervals:
The basics

Types of Statistical Inference

* Confidence intervals for estimating the value of a population parameter
* Tests of significance assesses the evidence for a claim about a population.
\checkmark Both types of inferences are based on the sampling distributions of statistics
\checkmark Both report probabilities that state "what would happen if we used the inference method many times"
§ When you use statistical inference, you are acting as if the data are a random sample or come from a randomized experiment.

What does \qquad $\%$ confidence really mean?
"In repeated samples of the same size, the confidence created will catch the true value/parameter (p) \qquad of the time."

In repeated samples of size 30, the conf. interval created will catch the true winning percent of the GAME 95\% of the time.

We are 95% confident that the true $\%$ of chickens infected with Salmonella is between 11.95% and 18.05%.

What does __ \% confidence really mean?
Whenever we create a confidence interval, we write a sentence interpretation:
"Based on our sample, we are 95% confident that the true \% (or proportion) of (content) is between $\underline{\text { a and }} \underline{\boldsymbol{b}} \%$.

Example: President Obama 45\% approval rating, MOE of 3\%, 95\% confidence:

We are 95\% confident that the true \% approval rating of President Obama is between 42% and 48%.

But the sample distribution is narrower than the population distribution, by a factor of $\sqrt{ } n$.

Thus, the estimates \bar{x} gained from our samples are always relatively close to the population parameter μ.

68-95-99.7 Rule
\checkmark In 95% of all samples, the mean score \bar{x} for the sample will be within two standard deviations of the population mean score \boldsymbol{m}. So the mean \bar{x} of 500 SAT Math scores will be within 9 points of \boldsymbol{m} in 95% of all samples.
\checkmark To say that $\bar{x} \pm 9$ is a 95% confidence interval for the population mean is to say that in repeated trials, 95% of these intervals capture \boldsymbol{m}.
\checkmark We are 95% confident that the unknown mean SAT Math score for all California high school seniors lies between 452 and 470.

68-95-99.7 Rule

Confidence interval

A level C confidence interval for a parameter has two parts:
\checkmark An interval calculated from the data, usually of the form
estimate \pm margin of error
\checkmark A confidence level C, which gives the probability that the interval will capture the true parameter value in repeated samples, or the success rate for the method.

95\% of all sample means will
be within roughly 2 standard
deviations $\left(2^{*} s / V n\right)$ of the
population parameter m.

Because distances are
symmetrical, this implies that
the population parameter
m must be within roughly 2
standard deviations from
the sample average \bar{x}, in

This reasoning is the essence of statistical inference.

Confidence Interval for a Population Mean
 Conditions for constructing a confidence interval for m

The construction of a confidence interval for a population m is appropriate when
() When the data come from an SRS from the population of interest, and

- The sampling distribution of x-bar is approximately normal

The important z^{*} values

$>$ Find the z^{*} for a 90% C.I, 95% C.I. and for a 99\% C.I.
> Summarize your results in a simple table

Confidence Level	Z^{*}
90%	1.645
95%	1.960
99%	2.576

$>\mathbf{N}(\mathbf{0}, \mathbf{1})$
$>$ Use invNorm $(p, 0,1)$

How do we find specific z^{*} values?
We can use a table of z values (Table A). For a particular confidence level C, the appropriate \boldsymbol{z}^{\star} value is just above it.

Ex. For a 98\% confidence level, $z^{*}=2.326$
We can use software. In Excel:
=NORMINV(probability,mean,standard_dev) gives z for a given cumulative probability.

Since we want the middle C probability, the probability we require is $(1-C) / 2$
Example: For a 98\% confidence level, $=$ NORMINV $(.01,0,1)=-2.32635$ (= neg. z^{*})

Confidence interval

The confidence interval is a range of values with an associated probability or confidence level \boldsymbol{C}. The probability quantifies the chance that the interval contains the true population parameter.

$\bar{₹} \pm 4.2$ is a 95% confidence interval for the population parameter.
This equation says that in 95% of the cases, the actual value of will be
within 4.2 units of the value of \bar{x}.

A confidence interval can be expressed as:

- Mean $\pm m$ m is called the margin of error within $\bar{x} \pm m$ Example: 120 ± 6
- Two endpoints of an interval within $(\bar{x}-m)$ to $(\bar{x}+m)$ ex. 114 to 126

A confidence level \boldsymbol{C} (in \%) indicates the probability that the μ falls within the interval. It represents the area under the normal curve within $\pm m$ of the center of the curve.

Review: standardizing the normal curve using z

Here, we work with the sampling distribution, and $s / V n$ is its standard deviation (spread).

Remember that s is the standard deviation of the original population.

Varying confidence levels

Confidence intervals contain the population mean m in $C \%$ of samples.
Different areas under the curve give different confidence levels C.

Practical use of $\boldsymbol{z}: \boldsymbol{z}^{*}$
$\square Z^{*}$ is related to the chosen confidence level C.
$\square C$ is the area under the standard normal curve between $-z^{*}$ and z^{*}.

The confidence interval is thus:

$$
\bar{x} \pm z^{*} \sigma / \sqrt{n}
$$

Link between confidence level and margin of error
The confidence level C determines the value of z^{*} (in Table C). The margin of error also depends on z^{*}.

Sample size and experimental design

You may need a certain margin of error (e.g., drug trial, manufacturing specs). In many cases, the population variability (s) is fixed, but we can choose the number of measurements (n).

So plan ahead what sample size to use to achieve that margin of error

$$
m=z^{*} \frac{\sigma}{\sqrt{n}} \Leftrightarrow n=\left(\frac{z^{*} \sigma}{m}\right)^{2}
$$

Remember, though, that sample size is not always stretchable at will. There are typically costs and constraints associated with large samples. The best approach is to use the smallest sample size that can give you useful results.

What sample size for a given margin of error?

Density of bacteria in solution:

Measurement equipment has standard deviation
 $\sigma=1^{*} 10^{6}$ bacteria/ml fluid.
How many measurements should you make to obtain a margin of error of at most $0.5^{*} 10^{6}$ bacteria/ml with a confidence level of 90% ?

For a 90% confidence interval, $z^{*}=1.645$.

$$
n=\left(\frac{z^{*} \sigma}{m}\right)^{2} \Rightarrow n=\left(\frac{1.645^{*} 1}{0.5}\right)^{2}=3.29^{2}=10.8241(2 n 7=2
$$

Using only 10 measurements will not be enough to ensure that m is no more than $0.5^{\star} 106$. Therefore, we need at least 11 measurements.

Impact of sample size

The spread in the sampling distribution of the mean is a function of the number of individuals per sample.

- The larger the sample size, the smaller the standard deviation (spread) of the sample mean distribution.
- But the spread only decreases at a rate equal to $\sqrt{ } n$.

