1-1 Sets of Numbers

Starter 1.1
Write in decimal form.

1. $-\frac{9}{2}$
-4.5
2. $\frac{2}{3}$
$0 . \overline{6}$
3. Write $\sqrt{2}$ as a decimal approximation.

$$
\approx 1.414
$$

Order from least to greatest.
4. $10,-5,-10,0,5$-10, -5, 0, 5, 10
5. $0.1,1,1.1,0.01,0.11,0.009$
0.009, 0.01, 0.1, 0.11, 1, 1.1

1-1 Sets of Numbers

Vocabulary	
set	finite set
element	infinite set
subset	interval notation
empty set	set-builder notation
roster notation	

1-1 Sets of Numbers

The diagram shows some important subsets of the real numbers.

1-1 Sets of Numbers

Objective

Classify and order real numbers.

1-1 Sets of Numbers

A set is a collection of items called elements. The rules of 8 -ball divide the set of billiard balls into three subsets: solids (1 through 7), stripes (9 through 15), and the 8 ball.

A subset is a set whose elements belong to another set. The empty set, denoted \varnothing, is a set containing no elements.

1-1 Sets of Numbers

Reading Math

Note the symbols for the sets of numbers.
\mathbb{R} : real numbers
\mathbb{Q} : rational numbers
\mathbb{Z} : integers
W: whole numbers
\mathbb{N} : natural numbers

1-1 Sets of Numbers

Rational numbers can be expressed as a quotient (or ratio) of two integers, $\frac{a}{b}$ where \mathbf{b}, the
denominator is not zero. The decimal form of a rational number either terminates or repeats.

I rrational numbers, such as $\sqrt{2}$ and π, cannot be expressed as a quotient of two integers, and their decimal forms do not terminate or repeat. However, you can approximate these numbers using terminating decimals

1-1 Sets of Numbers

Example 1A: Ordering and Classifying Real Numbers Consider the numbers $2 . \overline{3}, \pi, \sqrt{5},-\frac{11}{2}$, and 2.7652 . Order the numbers from least to greatest.

Write each number as a decimal to make it easier to compare them.

$$
\begin{array}{cc}
\sqrt{5} \approx 2.23 & \text { Use a decimal approximation for } \sqrt{5} . \\
\pi \approx 3.14 & \text { Use a decimal approximation for } \pi . \\
-\frac{11}{2} \approx-5.5 & \text { Rewrite }-\frac{11}{2} \text { in decimal form. } \\
-5.5<2.23<2 . \overline{3}<2.7652<3.14 & \text { Use }<\text { to compare the numbers. } \\
\text { The numbers in order from least to great are }-\frac{11}{2}, \sqrt{5}, 2 . \overline{3}, 2.7652, \text { and } \pi
\end{array}
$$

1-1 Sets of Numbers

Check It Out! Example 1A
Consider the numbers $-2, \pi,-0.321, \frac{3}{2}$ and $-\sqrt{ } 3$.
Order the numbers from least to greatest.
Write each number as a decimal to make it easier to compare them

$$
\begin{aligned}
& -\sqrt{3} \approx-1.313 \quad \text { Use a decimal approximation for }-\sqrt{3} \text {. } \\
& \frac{3}{2}=1.5 \quad \text { Rewrite } \frac{3}{2} \text { in decimal form. } \\
& \pi \approx 3.14 \quad \text { Use a decimal approximation for } \pi \text {. } \\
& -2<-1.313<-0.321<1.50<3.14 \text { Use < to compare the numbers. } \\
& \text { The numbers in order from least to great are }-2,-\sqrt{3},-0.321 \text {, } \\
& \frac{3}{2} \text {, and } \pi \text {. }
\end{aligned}
$$

1-1 Sets of Numbers

There are many ways to represent sets. For instance, you can use words to describe a set You can also use roster notation, in which the elements in a set are listed between braces, \{ \}.

Words	Roster Notation
The set of billiard balls is numbered 1 through 15.	$\{1,2,3,4,5,6,7,8,9,10$,
$11,12,13,14,15\}$	

1-1 Sets of Numbers

A set can be finite like the set of billiard ball numbers or infinite like the natural numbers $\{1,2,3,4 \ldots\}$.

A finite set has a definite, or finite, number of elements.
An infinite set has an unlimited, or infinite number of elements.

Helpful Hint

The Density Property states that between any two numbers there is another real number. So any interval that includes more than one point contains infinitely many points.

1-1 Sets of Numbers

Many infinite sets, such as the real numbers, cannot be represented in roster notation. There are other methods of representing these sets. For example, the number line represents the sets of all real numbers.
The set of real numbers between 3 and 5 , which is also an infinite set, can be represented on a number line or by an inequality.

1-1 Sets of Numbers

An interval that extends forever in the positive direction goes to infinity (∞), and an interval that extends forever in the negative direction goes to negative infinity $(-\infty)$.

1-1 Sets of Numbers

Example 2A: Interval Notation

Use interval notation to represent the set of numbers.
$7<x \leq 12$
$(7,12] \quad 7$ is not included, but 12 is.

1-1 Sets of Numbers

Example 2B: Interval Notation
Use interval notation to represent the set of numbers.

There are two intervals graphed on the number line.
$[-6,-4]$
$(5, \infty)$
$[-6,-4]$ or $(5, \infty)$
-6 and -4 are included.
5 is not included, and the interval continues forever in the positive direction.

The word "or" is used to indicate that a set includes more than one interval.

1-1 Sets of Numbers

Check It Out! Example 2
Use interval notation to represent each set of numbers.
a.

$(-\infty,-1] \quad-1$ is included, and the interval continues forever in the negative direction.
b. $\mathbf{x} \leq 2$ or $\mathbf{3}<\mathbf{x} \leq 11$
$(-\infty, 2] \quad 2$ is included, and the interval continues forever in the negative direction.
$(3,11] \quad 3$ is not included, but 11 is.
$(-\infty, 2]$ or $(3,11]$

1-1 Sets of Numbers

The set of all numbers x such that x has the given properties

Read the above as "the set of all numbers x such that x is greater than 8 and less than or equal to 15 and x is a natural number."

Helpful Hint

The symbol \in means "is an element of." So $x \in \mathrm{~N}$ is read " x is an element of the set of natural numbers," or " x is a natural number."

1-1 Sets of Numbers

Some representations of the same sets of real numbers are shown

Methods of Set Notation			
Words	Roster Notation	Interval Notation	Set-Builder Notation
All real numbers except 1	Cannot be written in roster notation	$(-\infty, 1)$ or $(1, \infty)$	$\{x \mid x+1\}$
Positive odd numbers	$\{1,3,5,7, \ldots\}$	Connot be notated using interval notation	$\{x \mid x=2 n-1$ and $n \in \mathbb{N}\}$
Numbers within 3 units of 2	Cannot be written in roster notation	$[-1,5]$	$\{x \mid-1 \leq x \leq 5\}$

1-1 Sets of Numbers

Example 3: Translating Between Methods of Set Notation

Rewrite each set in the indicated notation.
A. $\{x \mid x>-5.5, x \in z\}$; words
integers greater than -5.5
B. positive multiples of 10; roster notation
$\{10,20,30, \ldots\}$ The order of elements is not important.
C.

1-1 Sets of Numbers
Check It Out! Example 3
Rewrite each set in the indicated notation.
a. $\{2,4,6,8\}$; words
even numbers between 1 and 9 ; even numbers from 2 through 8
b. $\{x \mid 2<x<8$ and $x \in N\}$; roster notation
$\{3,4,5,6,7\} \quad$ The order of the elements is not important.
c. $[99, \infty\}$; set-builder notation
$\{x \mid x \geq 99\}$

