Starte	r 1.1		
Write i	n decimal f	form.	
1. $-\frac{9}{2}$	-4.5	2. $\frac{2}{3}$	0.6
3. Write	$\sqrt{2}$ as a de	cimal appro	oximation.
	≈1.	414	
Order	from least	to greates	st.
4. 10, -	5, -10, 0, 5	-10, -5,	0, 5, 10
5. 0.1,	1, 1.1, 0.01	, 0.11, 0.00	09
0.00	9. 0.01. 0	.1, 0.11, 1	, 1.1

	ocabulary
set	finite set
element	infinite set
subset	interval notation
empty set	set-builder notation
roster notatio	n

-1) Set	s of Numbers
	<u>numbers</u> can be expressed as a quotient of two integers, $\frac{a}{b}$ where b , the
	tor is not zero. The decimal form of a umber either terminates or repeats.
expressed decimal fo you can a	I numbers, such as $\sqrt{2}$ and π , cannot be as a quotient of two integers, and their prms do not terminate or repeat. However, pproximate these numbers using g decimals.

Example 1A: 0 Consider the	of Numbers Ordering and Classifying Real Numbers numbers $2.\overline{3}, \pi, \sqrt{5}, -\frac{11}{2}$, and 2.7652. Imbers from least to greatest.
Write each numbe	r as a decimal to make it easier to compare them.
√5 ≈ 2.23	Use a decimal approximation for $\sqrt{5}$.
$\pi \approx 3.14$	Use a decimal approximation for π .
$-\frac{11}{2} \approx -5.5$	Rewrite $-\frac{11}{2}$ in decimal form.
-5.5 < 2.23 < 2.3	< 2.7652 < 3.14 Use < to compare the numbers.
The numbers in or	der from least to great are $-\frac{11}{2}$, $\sqrt{5}$, 2. $\overline{3}$, 2.7652, and π

Example Consid Classify	e 1B: (er the / each	of Nun Ordering e numbe numbe s to whice	j and Cla rs 2.3, π, r by the	$\sqrt{5}, -\frac{11}{2}$ subset	, and 2.	
Numbers	Real	Rational	Integer	Whole	Natural	Irrational
2.3	1	✓				
π	1					✓
$\sqrt{5}$	✓					✓
$-\frac{11}{2}$	*	✓				
2.7652	1	1				

1-1 Sets of No	umbers
	k It Out! Example 1A bers -2, π , -0.321, $\frac{3}{2}$ and $-\sqrt{3}$.
Order the number	s from least to greatest.
Write each number as a d	ecimal to make it easier to compare them.
-√3 ≈ -1.313	Use a decimal approximation for $-\sqrt{3}$.
$\frac{3}{2} = 1.5$	Rewrite $\frac{3}{2}$ in decimal form.
$\pi \approx 3.14$	Use a decimal approximation for π .
-2 < -1.313 < -0.321 <	1.50 < 3.14 Use < to compare the numbers.
The numbers in order $\frac{3}{2}$, and π .	from least to great are $-2, -\sqrt{3}, -0.321,$

1-1	Sets	of	Numb	ers
-----	------	----	------	-----

Check It Out! Example 1B Consider the numbers -2, π , -0.321, $\frac{3}{2}$ and $-\sqrt{3}$. Classify each number by the subsets of the real numbers to which it belongs.

Numbers	Real	Rational	Integer	Whole	Natural	Irrational
-2	✓	1	✓			
π	✓					1
-0.321	✓	1				
3 2	~	1				
-√3	✓					1

1-1 Sets of Numbers

There are many ways to represent sets. For instance, you can use words to describe a set. You can also use <u>roster notation</u>, in which the elements in a set are listed between braces, $\{$ $\}$.

Words	Roster Notation
The set of billiard balls is numbered 1 through 15.	{1, 2, 3, 4, 5, 6, 7, 8, 9, 10, 11, 12, 13, 14, 15}

1-1) Sets of Numbers

A set can be *finite* like the set of billiard ball numbers or *infinite* like the natural numbers $\{1, 2, 3, 4 \dots\}$.

A **finite set** has a definite, or finite, number of elements.

An **infinite set** has an unlimited, or infinite number of elements.

Helpful Hint

The Density Property states that between any two numbers there is another real number. So any interval that includes more than one point contains infinitely many points.

in a set of num in an interval.	$d -\infty$ are not numbers, they can bers, so parentheses are used The table shows the relationshoresenting intervals.	d to enclose	e them
	Methods of Representing Interval	5	
Words	Number Line	Inequality	Interval Notation
Numbers less than 3	≪ 0 > -1 0 1 2 3 4 5	x < 3	(−∞, 3)
Numbers greater than or equal to — 2	< ↓ ↓ ↓ -4 -3 -2 -1 0 1 2	<i>x</i> ≥ −2	[−2, ∞)
Numbers between 2 and 4	< ⊕ ⊕ > -1 0 1 2 3 4 5	2 < <i>x</i> < 4	(2, 4)
Numbers 1 through 3		$1 \le x \le 3$	[1, 3]

1-1 Sets of Numbers

Example 2A: Interval Notation

Use interval notation to represent the set of numbers.

$7 < x \leq 12$

(7, 12] 7 is not included, but 12 is.

1-1 Sets of N	umbers
Use interval nota numbers.	e 2B: Interval Notation tion to represent the set of -2 0 2 4 6
	vals graphed on the number line.
[−6, −4] (5, ∞)	-6 and -4 are included. 5 is not included, and the interval continues forever in the positive direction.
[−6, −4] or (5, ∞)	The word "or" is used to indicate that a set includes more than one interval.

		check It Out! Example 2 notation to represent each set of
a.	4 -3 -2	-1 0 1 2 3 4
	(-∞, -1]	-1 is included, and the interval continues forever in the negative direction.
b.	<i>x</i> ≤ 2 or 3	< <i>x</i> ≤ 11
	(-∞, 2]	2 is included, and the interval continues forever in the negative direction.
	(3, 11]	3 is not included, but 11 is.
	(-∞, 2] or	(3, 11]

1-1 Sets	s of Numb	ers		
Some representations of the same sets of real numbers are shown.				
Methods of Set Notation				
Words	Roster Notation	Interval Notation	Set-Builder Notation	
All real numbers except 1	Cannot be written in roster notation	$(-\infty, 1)$ or $(1, \infty)$	$\{x \mid x \neq 1\}$	
Positive odd numbers	{1, 3, 5, 7,}	Cannot be notated using interval notation	$ \begin{cases} x \mid x = 2n - 1 \text{ and} \\ n \in \mathbb{N} \end{cases} $	
Numbers within	Cannot be written	[-1, 5]	$\{x \mid -1 \le x \le 5\}$	

E	xample 3: Translating Between Methods of Set Notation
	write each set in the indicated notation. $\{x \mid x > -5.5, x \in z \}$; words
	integers greater than -5.5
в.	positive multiples of 10; roster notation {10, 20, 30,} The order of elements is not important.
c.	$\begin{array}{c ccccccccccccccccccccccccccccccccccc$

1-1 Sets of Numbers

Check It Out! Example 3

Rewrite each set in the indicated notation.

a. {2, 4, 6, 8}; words

even numbers between 1 and 9; even numbers from 2 through 8 $\,$

b. $\{x \mid 2 < x < 8 \text{ and } x \in N\}$; roster notation

{3, 4, 5, 6, 7} The order of the elements is not important.

c. [99, ∞}; set-builder notation

 $\{x\mid x\geq 99\}$