Turn in:

- HW 1.1 ???
- Signed Contract
- **1.2: Composition of Functions**

Operations with Functions			
Sum of <i>f</i> and <i>g</i> :	(f+g)(x) = f(x) + g(x)		
	f(f-g)(x) = f(x) - g(x)		
v 0	$(f \bullet g)(x) = f(x) \bullet g(x)$		
Quotient of <i>f</i> and <i>g</i> :	$\left \frac{f}{g}\right (x) = \frac{f(x)}{g(x)}$, provided $g(x) \neq 0$		
	$g(x) \neq 0$		
Quotient of <i>f</i> and <i>g</i> :	$\left(\frac{f}{g}\right)(x) = \frac{f(x)}{g(x)}$, provided $g(x) \neq 0$		

Evalua	ting a Cor	nposite Fu	nction
EXAMPLE			
Suppose the	hat $f(x) = 2x^2$	$+3 g(x) = 4x^3 -$	⊦1. Find:
(a) $(f \circ g)(1)$	(b) $(g \circ f)(1)$	(c) $(f \circ f)(-2)$	(d) $(g \circ g)(-1)$

Finding a Composite Function and its Domain EXAMPLE Suppose that $f(x) = 2x^2 + 3$ $g(x) = 4x^3 + 1$. Find: Find: (a) $f \circ g$ (b) $g \circ f$ Then find the domain of each composite function.

g(x) must be defined so any x not in the domain of g must be excluded.
f(g(x)) must be defined so any x for which g(x) is not in the domain of f must be excluded.

Finding a Compo	eite Function and Its Domain
EXAMPLE	
Suppose that $f(x)$	$=\frac{1}{x}$ and $g(x) = \sqrt{x-1}$
Find: (a) $f \circ g$	g (b) $f \circ f$
Then find the do	main of each composite function.

Showing that Two Composite Functions are Equal

EXAMPLE

If $f(x) = \frac{1}{2}(x-1)$ and g(x) = 2x+1, show that $(f \circ g)(x) = (g \circ f)(x) = x$ for every x in the domain of $f \circ g$ and $g \circ f$.