1-2 Properties of Real Numbers	
Starter 1.2 Simplify.	
15+5 o	
2. $-7\left(\frac{1}{-7}\right)$ 1	
3. $\frac{1}{2}(3.62)$ 1.81	
4. Find 10% of \$61.70. \$6.17	
5 . Find the reciprocal of -4 . $\frac{1}{-4}$	

Properties Real Numbers		
For all real numbers <i>n</i> ,		
Additive Identity Property (0)	The sum of a number and 0, the additive identity, is the original number. n + 0 = 0 + n = n	
Multiplicative I dentity Property (1)	The product of a number and 1, the multiplicative identity, is the original number. $n \bullet 1 = 1 \bullet n = n$	
Additive Inverse Property	The sum of a number and its <u>opposite</u> , or additive inverse, is 0. n + (-n) = 0	
Multiplicative Inverse Property	The product of a nonzero number and its reciprocal, or multiplicative inverse, is 1.	
	$n \bullet \frac{1}{n} = 1 (n \neq 0)$	

1-2 Properties of Re	eal Numbers	
Check It Out! Example 1A		
Find the additive and mul each number.	tiplicative inverse of	
500		
additive inverse: -500	The opposite of 500 is –500.	
<i>Check</i> 500 + (-500) = 0 \checkmark	The Additive Inverse Property holds.	
multiplicative inverse: $\frac{1}{500}$	The reciprocal of 500 is $\frac{1}{500}$.	
Check $500 \cdot \left(\frac{1}{500}\right) = 1 \checkmark$	The Multiplicative Inverse Property holds.	

1-2 Properties of Real	Numbers	
Check It Out! Example 1B		
Find the additive and multiple each number.	icative inverse of	
-0.01		
additive inverse: 0.01	The opposite of –0.01 is 0.01.	
multiplicative inverse: –100	The reciprocal of –0.01 is –100.	

Properties Real Numbers		
For all real numbers <i>a</i> and <i>b</i> ,		
Closure Property	The sum or product of any two real numbers is a real number, $a + b \in \Re$ $ab \in \Re$	
Commutative Property	You can add or multiply real numbers in any order without changing the result. a + b = b + a ab = ba	
Associative Property	The sum or product of three or more real numbers is the same regardless of the way the numbers are <u>grouped</u> . (a + b) + c = a + (b + c) (ab)c = a(bc)	

1-2 Properties of Real Numbers		
Properties Real Numbers		
For all real numbers <i>a</i> and <i>b</i> ,		
Distributive PropertyWhen you multiply a sum by a number, the result is the same whether you add and the multiply or whether you multiply each term the number and add the products. $a(b + c) = ab + ac$ $(b + c)a = ba + ca$		

1-2 Properties of Re	eal Numbers	
Example 3: Identifying Properties of Real Numbers		
Identify the property der question.	nonstrated by each	
A) $2 \bullet (3.9) = (3.9) \bullet 2$	Numbers are multiplied in any order without changing the results.	
Commutative Property of Multiplication		
B) $3(2\sqrt{8}) = (3 \cdot 2)\sqrt{8}$ Associative Property of A	The numbers have been regrouped. ddition	

1-2 Properties of Real	Numbers
Example 4: Consumer Economi	cs Application
Use mental math to find a 59 purchase.	% tax on a \$42.40
<i>Think:</i> 10% of \$42.40 10%(42.40) = 4.240 =	4.24 Move the decimal point left 1 place.
<i>Think:</i> 5% = $\frac{1}{2}(10\%)$	
$\frac{1}{2}(4.24) = 2.12$ 5% is h half of	aalf of 10%, so find 4.24.
A 5% tax on a \$42.40 is \$2.1	2.

1-2 Properties of Re	eal Numbers	
Check It Out! Example 3		
Use mental math to find a \$15.60 shirt.	a 20% discount on	
<i>Think:</i> 20% = 10% • 2 10%(15.60) = 1.560	D = 1.56 Move the decimal point left 1 place.	
1.56 • 2 = 3.12	20% is double 10%, so multiply 1.56 by 2.	
A 20% discount on a \$15.6	50 shirt is \$3.12.	

1-2 Properties of Real NumbersExample 5: Classifying Statements as Sometimes,
Always, or Never TrueClassifying each statement as sometimes,
Always, or never true. Give examples or
properties to support your answers. $a \cdot b = a$, where b = 3
sometimes true
true example: $0 \cdot 3 = 0$ True and false
examples exist. The
statement is true
when a = 0 and false
false example: $1 \cdot 3 \neq 1$

1-2 Properties of Real Numbers

Check It Out! Example 4a Classify each statement as sometimes, always, or never true. Give examples or properties to support your answer.

a + (-a) = b + (-b)

Always true by the Additive Inverse Property.

1-2 Properties of Real Numbers Check It Out! Example 4b Classify each statement as sometimes, always, or never true. Give examples or properties to support your answer. a - (b + c) = (a - b) + (a - c)sometimes true True and false true example: examples exist. The 0 - (1 + 2) = (0 - 1) + (0 - 2)statement is true -3 = -3when a = 0, b = 1,and c = 2. False false example: when a = 1, b = 2,1 - (2 + 3) = (1 - 2) + (1 - 3)-4 \neq -3 and c = 3.