

What does it mean to INTERCEPT a pass in football?
The path of the defender crosses the path of the thrown football.

In algebra, what are \boldsymbol{x} - and \boldsymbol{y}-intercepts?

What are the \boldsymbol{x} - and \boldsymbol{y}-intercepts?
The x-intercept is where the graph crosses the x -axis.
The \boldsymbol{y}-coordinate is always 0 .
The \boldsymbol{y}-intercept is where the graph crosses the y-axis.
The \boldsymbol{x}-coordinate is always 0 .

Find the \boldsymbol{x} - and \boldsymbol{y}-intercepts.

1) $x-2 y=12$
\boldsymbol{x}-intercept: Plug in $\mathbf{0}$ for \boldsymbol{y}.

$$
\begin{gathered}
\boldsymbol{x}-2(\mathbf{0})=12 \\
\boldsymbol{x}=12 ;(\mathbf{1 2}, \mathbf{0})
\end{gathered}
$$

\boldsymbol{y}-intercept: Plug in $\mathbf{0}$ for \boldsymbol{x}.

$$
\begin{gathered}
0-2 y=12 \\
y=-6 ;(0,-6)
\end{gathered}
$$

Find the x - and y-intercepts.

2) $-3 x+5 y=9$
\boldsymbol{x}-intercept: Plug in $\mathbf{0}$ for \boldsymbol{y}.

$$
\begin{gathered}
-3 x-5(0)=9 \\
-3 x=9 \\
x=-3 ;(-3,0)
\end{gathered}
$$

\boldsymbol{y}-intercept: Plug in $\mathbf{0}$ for \boldsymbol{x}.

$$
\begin{gathered}
-3(\mathbf{0})+5 y=9 \\
5 y=9 \\
y=\frac{9}{5} ;\left(\mathbf{0}, \frac{9}{5}\right)
\end{gathered}
$$

The Possibilities for a Line's Slope

Find the slope between $(-3,6)$ and $(5,2)$

Find the slope between $(5,4)$ and $(5,2)$.

STOP!!!

The slope is undefined.

Find the slope between $(5,4)$ and $(-3,4)$.

This slope is zero.
Find the slope between $(5,4)$ and $(5,2)$.

Find the slope between $(5,4)$ and $(-3,4)$.

We have used 3 different methods for graphing equations.

1) using a t-table
2) using slope-intercept form
3) using x - and y-intercepts

The goal is to determine which method is the easiest to use for each problem!

Here's your cheat sheet!

- If the equation is in STANDARD FORM ($\mathrm{Ax}+\mathrm{By}=\mathrm{C}$), graph using the intercepts.
- If the equation is in SLOPE-INTERCEPT FORM ($y=m x+b$), graph using slope and intercept or a t-table (whichever is easier for you).
- If the equation is in neither form, rewrite the equation in the form you like the best!

Which graphing method is easiest?
Using slope and y-intercept (or t-table)!

These notes will graph using \mathbf{m} and \mathbf{b}

$$
\mathbf{m}=\frac{-1}{3} \quad, \mathbf{b}=\mathbf{2}
$$

SLOPE-INTERCEPT FORM

If the graph of an equation intersects the y-axis at the point $(0, b)$, then the number b is the y-intercept of the graph. To find the y-intercept of a line, let $x=0$ in an equation for the line and solve for y.

The slope intercept form of a linear equation is
$y=m x+b$.
m is the slope
b is the y-intercept

EXAMPLE Using the Slope-Intercept Form
$\boldsymbol{a}=-\mathbf{5 0} \boldsymbol{t}+850$

What is your weekly payment?
SOLUTION
From the slope-intercept form you can see that the slope is $m=\mathbf{- 5 0}$.

This means that the amount you owe is changing at a rate of $\mathbf{- 5 0}$ per week.

In other words, your weekly payment is $\$ 50$.

EXAMPLE Using the Slope-Intercept Form

What is the original amount you owe on layaway?
SOLUTION
First rewrite the equation as $\boldsymbol{a}=-50 \boldsymbol{t}+850$ so that it is in slope-intercept form.

Then you can see that the \boldsymbol{a}-intercept is 850 .
So, the original amount you owe on layaway (the amount when $\boldsymbol{t}=0$) is $\mathbf{\$ 8 5 0}$.

EXAMPLE Using the Slope-Intercept Form
$\boldsymbol{a}=-50 \boldsymbol{t}+850$

Graph the model.
SOLUTION

Notice that the line stops when it reaches the \boldsymbol{t}-axis (at $\boldsymbol{t}=\mathbf{1 7}$).

The computer is completely paid for at that point.

STANDARD FORM

GRAPHING EQUATIONS IN STANDARD FORM

The standard form of an equation gives you a quick way to graph the equation.
(1) Write equation in standard form.
2. Find x-intercept by letting $y=0$. Solve for \boldsymbol{x}. Use x-intercept to plot point where line crosses x-axis.
(3) Find y-intercept by letting $x=0$. Solve for \boldsymbol{y}. Use y-intercept to plot point where line crosses y-axis.
4) Draw line through points.

STANDARD FORM

The equation of a vertical line cannot be written in slope-intercept
form because the slope of a vertical line is not defined. Every
linear equation, however, can be written in standard form-
even the equation of a vertical line.
HORIZONTAL AND VERTICAL LINES
HORIZONTAL LINESThe graph of $y=\boldsymbol{c}$ is a horizontal line through $(0, \boldsymbol{c})$.
VERTICAL LINES
The graph of $x=\boldsymbol{c}$ is a vertical line through $(\boldsymbol{c}, 0)$.

1. Start by graphing the y intercept ($b=2$).
2. From the y-intercept, apply "rise over run" using your slope. rise $=1$, run $=-3$
3. Repeat this again from your new point.
4. Draw a line through your points.

Review: Graphing with intercepts:

$$
-2 x+3 y=12
$$

1. Find your x -intercept:

Let $\mathrm{y}=\mathrm{o}$
$-2 \mathrm{x}+3(\mathrm{o})=12$
$\mathrm{x}=-6 ;(-6, o)$
2. Find your y-intercept:

Let $\mathrm{x}=\mathrm{o}$
$-2(0)+3 y=12$
$y=4 ;(0,4)$
3. Graph both points and draw a line through them.

Which method is easiest to graph $-3 x+6 y=2$?

1. T-table
2. Slope and intercept
3. X- and Y-intercepts
4. Graphing calculator

Which is the graph of $y=x+2$?

1.

2.

3.

4.

Graphing equations of lines

- What would you do to graph the following equation? $\quad 3 x-y-2=0$

Slope of a line

The slope, m, of the line through $\left[x_{1}, y_{1}\right.$) and $\left(x_{2}, y_{2}\right)$ is given by the following equation, if $x_{1} \neq x_{2}$

$$
m=\frac{y_{2}-y_{1}}{x_{2}-x_{1}}
$$

- Sketch a sample graph for each of the following slopes : positive, negative, zero, undefined.

