| Given $f(x) = 3x$ and $g(x) = x^2 - 1$ , find each function.         1. $(f + g)(x)$ Answer: $x^2 + 3x - 1$ 2. $(f - g)(x)$ Answer: $-x^2 + 3x + 1$ 3. $[f \circ g](x)$ Answer: $3x^2 - 3$ 4. $[g \circ f](x)$ Answer: $9x^2 - 1$ | ARTER 1.3                           |                                       |   |
|-----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-------------------------------------|---------------------------------------|---|
| 1. $(f + g)(x)$ Answer: $x^2 + 3x - 1$ 2. $(f - g)(x)$ Answer: $-x^2 + 3x + 1$ 3. $[f \circ g](x)$ Answer: $3x^2 - 3$ 4. $[g \circ f](x)$ Answer: $9x^2 - 1$                                                                      | Given f(x) = 3 function.            | $3x$ and $g(x) = x^2 - 1$ , find each |   |
| 2. $(f - g)(x)$ Answer: $-x^2 + 3x + 1$ 3. $[f \circ g](x)$ Answer: $3x^2 - 3$ 4. $[g \circ f](x)$ Answer: $9x^2 - 1$                                                                                                             | <b>1.</b> $(f + g)(x)$              | Answer: x <sup>2</sup> + 3x - 1       |   |
| <ul> <li>3. [f ∘ g](x) Answer: 3x<sup>2</sup> - 3</li> <li>4. [g ∘ f](x) Answer: 9x<sup>2</sup> - 1</li> </ul>                                                                                                                    | <b>2.</b> $(f - g)(x)$              | Answer: $-x^2 + 3x + 1$               |   |
| 4.[g ∘ f](x) Answer: 9x <sup>2</sup> - 1                                                                                                                                                                                          | $3.[f\circ g](x)$                   | Answer: 3x <sup>2</sup> -3            |   |
|                                                                                                                                                                                                                                   | $\textbf{4.}[g\circ f](\textbf{x})$ | Answer: 9x <sup>2</sup> -1            | 4 |
|                                                                                                                                                                                                                                   |                                     |                                       |   |
|                                                                                                                                                                                                                                   |                                     |                                       |   |







Find the *x*- and *y*-intercepts. 1) x - 2y = 12 *x*-intercept: Plug in 0 for *y*. x - 2(0) = 12 x = 12; (12, 0) *y*-intercept: Plug in 0 for *x*. 0 - 2y = 12y = -6; (0, -6) Find the x- and y-intercepts. 2) -3x + 5y = 9x-intercept: Plug in 0 for y. -3x - 5(0) = 9 -3x = 9 x = -3; (-3, 0)y-intercept: Plug in 0 for x. -3(0) + 5y = 9 5y = 9 $y = \frac{9}{5}; (0, \frac{9}{5})$ 























- The slope of a *vertical line* is undefined.
- The slope of a *horizontal line* is 0.



## We have used 3 different methods for graphing equations.

- 1) using a *t*-table
- 2) using slope-intercept form
- 3) using *x* and *y*-intercepts

The goal is to determine which method is the easiest to use for each problem!

## Here's your cheat sheet!

- If the equation is in STANDARD FORM (Ax + By = C), graph using the intercepts.
- If the equation is in SLOPE-INTERCEPT FORM (y = mx + b), graph using slope and intercept or a t-table (whichever is easier for you).
- If the equation is in neither form, rewrite the equation in the form you like the best!













|         |                                                                             | 1       |                                                                     |
|---------|-----------------------------------------------------------------------------|---------|---------------------------------------------------------------------|
| EXAMPLE | Using the Slope-Intercept Form                                              | EXAMPLE | Using the Slope-Interce                                             |
|         | a = -50 t + 850                                                             |         | a = -50t + 850                                                      |
|         | What is your weekly payment?                                                |         | Graph the model.                                                    |
|         | SOLUTION                                                                    |         | SOLUTION                                                            |
|         | From the slope-intercept form you can see that the slope is $m = -50$ .     |         | Notice that the line sto<br>reaches the <i>t</i> -axis (at <i>t</i> |
|         | This means that the amount you owe is changing at a rate of $-50$ per week. |         | The computer is comp                                                |
|         | In other words, your weekly payment is <b>\$50</b> .                        |         | for at that point.                                                  |
|         | $\eta < \cdot$                                                              |         |                                                                     |
|         |                                                                             |         |                                                                     |
|         |                                                                             |         |                                                                     |

















Which method is easiest to graph -3x + 6y = 2?

- 1. T-table
- 2. Slope and intercept
- 3. X- and Y-intercepts
- 4. Graphing calculator











| Example 2 Graph 2y - 3x = 9 using the y-<br>the slope.                                                                                                                                                                                                                                                                                  | -intercept and |
|-----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|----------------|
| Step 1: Rewrite the equation in slope-intercep<br>2y - 3x = 9<br>$y = \frac{3}{2}x + \frac{9}{2}$<br>Step 2: Identify the slope and <i>y</i> -intercept.<br>$m = \frac{3}{2}, b = \frac{9}{2}$ or 4.5<br>Step 3: Graph the <i>y</i> -intercept. Then use the<br>slope to graph a second point.<br>Connect the points to graph the line. | y form.        |
| Connoct and points to graph and men                                                                                                                                                                                                                                                                                                     | + 0            |



| Slopes of linear functions                                                                      |                                      |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |  |  |  |
|-------------------------------------------------------------------------------------------------|--------------------------------------|-----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|--------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|--|--|--|
| • Sketch a sample graph for each of the following slopes : positive, negative, zero, undefined. |                                      |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |  |  |  |
|                                                                                                 |                                      |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |  |  |  |
| positive slope                                                                                  | negative slope                       | 0 slope                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           | undefined slope                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |  |  |  |
| y4<br>y=2x4 3                                                                                   | y<br>y<br>y<br>y=-x+1<br>y=-x+1<br>x | 0 slope<br>$y_{\perp}$<br>y = 3<br>(0)<br>y = 3<br>(0)<br>(1)<br>(2)<br>(2)<br>(3)<br>(3)<br>(3)<br>(3)<br>(3)<br>(3)<br>(3)<br>(3)<br>(3)<br>(3)<br>(3)<br>(3)<br>(3)<br>(3)<br>(3)<br>(3)<br>(3)<br>(3)<br>(3)<br>(3)<br>(3)<br>(3)<br>(3)<br>(3)<br>(3)<br>(3)<br>(3)<br>(3)<br>(3)<br>(3)<br>(3)<br>(3)<br>(3)<br>(3)<br>(3)<br>(3)<br>(3)<br>(3)<br>(3)<br>(3)<br>(3)<br>(3)<br>(3)<br>(3)<br>(3)<br>(3)<br>(3)<br>(3)<br>(3)<br>(3)<br>(3)<br>(3)<br>(3)<br>(3)<br>(3)<br>(3)<br>(3)<br>(3)<br>(3)<br>(3)<br>(3)<br>(3)<br>(3)<br>(3)<br>(3)<br>(3)<br>(3)<br>(3)<br>(3)<br>(3)<br>(3)<br>(3)<br>(3)<br>(3)<br>(3)<br>(3)<br>(3)<br>(3)<br>(3)<br>(3)<br>(3)<br>(3)<br>(3)<br>(3)<br>(3)<br>(3)<br>(3)<br>(3)<br>(3)<br>(3)<br>(3)<br>(3)<br>(3)<br>(3)<br>(3)<br>(3)<br>(3)<br>(3)<br>(3)<br>(3)<br>(3)<br>(3)<br>(3)<br>(3)<br>(3)<br>(3)<br>(3)<br>(3)<br>(3)<br>(3)<br>(3)<br>(3)<br>(3)<br>(3)<br>(3)<br>(3)<br>(3)<br>(3)<br>(3)<br>(3)<br>(3)<br>(3)<br>(3)<br>(3)<br>(3)<br>(3)<br>(3)<br>(3)<br>(3)<br>(3)<br>(3)<br>(3)<br>(3)<br>(3)<br>(3)<br>(3)<br>(3)<br>(3)<br>(3)<br>(3)<br>(3)<br>(3)<br>(3)<br>(3)<br>(3)<br>(3)<br>(3)<br>(3)<br>(3)<br>(3)<br>(3)<br>(3)<br>(3)<br>(3)<br>(3)<br>(3)<br>(3)<br>(3)<br>(3)<br>(3)<br>(3)<br>(3)<br>(3)<br>(3)<br>(3)<br>(3)<br>(3)<br>(3)<br>(3)<br>(3)<br>(3)<br>(3)<br>(3)<br>(3)<br>(3)<br>(3)<br>(3)<br>(3)<br>(3)<br>(3)<br>(3)<br>(3)<br>(3)<br>(3)<br>(3)<br>(3)<br>(3)<br>(3)<br>(3)<br>(3)<br>(3)<br>(3)<br>(3)<br>(3)<br>(3)<br>(3)<br>(3)<br>(3)<br>(3)<br>(3)<br>(3)<br>(3)<br>(3)<br>(3)<br>(3)<br>(3)<br>(3)<br>(3)<br>(3)<br>(3)<br>(3)<br>(3)<br>(3)<br>(3)<br>(3)<br>(3)<br>(3)<br>(3)<br>(3)<br>(3)<br>(3)<br>(3)<br>(3)<br>(3)<br>(3)<br>(3)<br>(3)<br>(3)<br>(3)<br>(3)<br>(3)<br>(3)<br>(3)<br>(3)<br>(3)<br>(3)<br>(3)<br>(3)<br>(3)<br>(3)<br>(3)<br>(3)<br>(3)<br>(3)<br>(3)<br>(3)<br>(3)<br>(3)<br>(3)<br>(3)<br>(3)<br>(3)<br>(3)<br>(3)<br>(3)<br>(3)<br>(3)<br>(3)<br>(3)<br>(3)<br>(3)<br>(3)<br>(3)<br>(3)<br>(3)<br>(3)<br>(3)<br>(3)<br>(3)<br>(3)<br>(3)<br>(3)<br>(3)<br>(3)<br>(3)<br>(3)<br>(3)<br>(3)<br>(3)<br>(3)<br>(3)<br>(3) | undefined slope<br>x = -2<br>$y_A$<br>$y_A$<br>$y_A$<br>$y_A$<br>$y_A$<br>$y_A$<br>$y_A$<br>$y_A$<br>$y_A$<br>$y_A$<br>$y_A$<br>$y_A$<br>$y_A$<br>$y_A$<br>$y_A$<br>$y_A$<br>$y_A$<br>$y_A$<br>$y_A$<br>$y_A$<br>$y_A$<br>$y_A$<br>$y_A$<br>$y_A$<br>$y_A$<br>$y_A$<br>$y_A$<br>$y_A$<br>$y_A$<br>$y_A$<br>$y_A$<br>$y_A$<br>$y_A$<br>$y_A$<br>$y_A$<br>$y_A$<br>$y_A$<br>$y_A$<br>$y_A$<br>$y_A$<br>$y_A$<br>$y_A$<br>$y_A$<br>$y_A$<br>$y_A$<br>$y_A$<br>$y_A$<br>$y_A$<br>$y_A$<br>$y_A$<br>$y_A$<br>$y_A$<br>$y_A$<br>$y_A$<br>$y_A$<br>$y_A$<br>$y_A$<br>$y_A$<br>$y_A$<br>$y_A$<br>$y_A$<br>$y_A$<br>$y_A$<br>$y_A$<br>$y_A$<br>$y_A$<br>$y_A$<br>$y_A$<br>$y_A$<br>$y_A$<br>$y_A$<br>$y_A$<br>$y_A$<br>$y_A$<br>$y_A$<br>$y_A$<br>$y_A$<br>$y_A$<br>$y_A$<br>$y_A$<br>$y_A$<br>$y_A$<br>$y_A$<br>$y_A$<br>$y_A$<br>$y_A$<br>$y_A$<br>$y_A$<br>$y_A$<br>$y_A$<br>$y_A$<br>$y_A$<br>$y_A$<br>$y_A$<br>$y_A$<br>$y_A$<br>$y_A$<br>$y_A$<br>$y_A$<br>$y_A$<br>$y_A$<br>$y_A$<br>$y_A$<br>$y_A$<br>$y_A$<br>$y_A$<br>$y_A$<br>$y_A$<br>$y_A$<br>$y_A$<br>$y_A$<br>$y_A$<br>$y_A$<br>$y_A$<br>$y_A$<br>$y_A$<br>$y_A$<br>$y_A$<br>$y_A$<br>$y_A$<br>$y_A$<br>$y_A$<br>$y_A$<br>$y_A$<br>$y_A$<br>$y_A$<br>$y_A$<br>$y_A$<br>$y_A$<br>$y_A$<br>$y_A$<br>$y_A$<br>$y_A$<br>$y_A$<br>$y_A$<br>$y_A$<br>$y_A$<br>$y_A$<br>$y_A$<br>$y_A$<br>$y_A$<br>$y_A$<br>$y_A$<br>$y_A$<br>$y_A$<br>$y_A$<br>$y_A$<br>$y_A$<br>$y_A$<br>$y_A$<br>$y_A$<br>$y_A$<br>$y_A$<br>$y_A$<br>$y_A$<br>$y_A$<br>$y_A$<br>$y_A$<br>$y_A$<br>$y_A$<br>$y_A$<br>$y_A$<br>$y_A$<br>$y_A$<br>$y_A$<br>$y_A$<br>$y_A$<br>$y_A$<br>$y_A$<br>$y_A$<br>$y_A$<br>$y_A$<br>$y_A$<br>$y_A$<br>$y_A$<br>$y_A$<br>$y_A$<br>$y_A$<br>$y_A$<br>$y_A$<br>$y_A$<br>$y_A$<br>$y_A$<br>$y_A$<br>$y_A$<br>$y_A$<br>$y_A$<br>$y_A$<br>$y_A$<br>$y_A$<br>$y_A$<br>$y_A$<br>$y_A$<br>$y_A$<br>$y_A$<br>$y_A$<br>$y_A$<br>$y_A$<br>$y_A$<br>$y_A$<br>$y_A$<br>$y_A$<br>$y_A$<br>$y_A$<br>$y_A$<br>$y_A$<br>$y_A$<br>$y_A$<br>$y_A$<br>$y_A$<br>$y_A$<br>$y_A$<br>$y_A$<br>$y_A$<br>$y_A$<br>$y_A$<br>$y_A$<br>$y_A$<br>$y_A$<br>$y_A$<br>$y_A$<br>$y_A$<br>$y_A$<br>$y_A$<br>$y_A$<br>$y_A$<br>$y_A$<br>$y_A$<br>$y_A$<br>$y_A$<br>$y_A$<br>$y_A$<br>$y_A$<br>$y_A$<br>$y_A$<br>$y_A$<br>$y_A$<br>$y_A$<br>$y_A$<br>$y_A$<br>$y_A$<br>$y_A$<br>$y_A$<br>$y_A$<br>$y_A$<br>$y_A$<br>$y_A$<br>$y_A$<br>$y_A$<br>$y_A$<br>$y_A$<br>$y_A$<br>$y_A$<br>$y_A$<br>$y_A$<br>$y_A$<br>$y_A$<br>$y_A$<br>$y_A$<br>$y_A$<br>$y_A$<br>$y_A$<br>$y_A$<br>$y_A$<br>$y_A$<br>$y_A$<br>$y_A$<br>$y_A$<br>$y_A$<br>$y_A$<br>$y_A$<br>$y_A$<br>$y_A$<br>$y_A$<br>$y_A$<br>$y_A$<br>$y_A$<br>$y_A$<br>$y_A$<br>$y_A$<br>$y_A$<br>$y_A$<br>$y_A$<br>$y_A$<br>$y_A$<br>$y_A$<br>$y_A$<br>$y_A$<br>y |  |  |  |

| Graphing Linear Ea                                     | quations                                                               |
|--------------------------------------------------------|------------------------------------------------------------------------|
| Graph each equation using th<br>1 - 2r - r = 6 = 0     | e x- and y-intercepts.<br>2, 4x + 2y + 8 = 0                           |
|                                                        |                                                                        |
| Graph each equation using th 3. $y = 5x - \frac{1}{2}$ | be y-intercept and the slope. $\mathbf{4.\ y} = \frac{1}{2}\mathbf{x}$ |
| · · · · · · · · · · · · · · · · · · ·                  | - 0 ž                                                                  |
| +++++++++++++++++++++++++++++++++++++++                | +++++++++++++++++++++++++++++++++++++++                                |

