1-3 Square Roots

Starter 1.3

Round to the nearest tenth.

1. 3.14
3.1
2. 1.97
2.0

Find each square root.
3. $\sqrt{16} \quad 4$
4. $\sqrt{625}$
25

Write each fraction in simplest form.
5. $\frac{24}{72} \frac{1}{3}$
6. $169 \quad 13$
Simplify.
8. $\frac{12}{18} \cdot \frac{6}{21} \quad \frac{4}{21}$
7. $\frac{1}{3} \cdot \frac{5}{3} \quad \frac{5}{9}$

Holt Algebra 2

1-3 Square Roots
Perfect Squares

Number	Square
1	1
2	4
3	9
4	16
5	25
6	36
7	49
8	64
9	81
10	100

Number	Square
11	121
12	144
13	169
14	196
15	225
16	256
17	289
18	324
19	361
20	400

Holt Algebra 2

1-3 Square Roots

Vocabulary

- Radical symbol (V)
- Radicand- number or expression under the radical symbol
- Principal root - positive square root of a number
- rationalize the denominator
- like radical terms

$$
\sqrt{25}=5 \quad-\sqrt{25}=-5 \quad \pm \sqrt{25}= \pm 5=5 \text { or }-5
$$

Holt Algebra 2

1-3 Square Roots

Example 1: Estimating Square Roots

Estimate $\sqrt{27}$ to the nearest tenth.

$$
\begin{array}{cl}
\sqrt{25}<\sqrt{27}<\sqrt{36} & \begin{array}{l}
\text { Find the two perfect squares that } \\
27 \text { lies between. } \\
5<\sqrt{27}<6
\end{array} \begin{array}{l}
\text { Find the two integers that } \\
\text { lies between } \sqrt{27} .
\end{array}
\end{array}
$$

Because 27 is closer to 25 than to $36, \sqrt{27}$ is close to 5 than to 6 .

$$
\begin{array}{rll}
\text { Try 5.2: } & 5.2^{2}=27.04 & \text { Too high, try 5.1. } \\
5.1^{2}=26.01 & \text { Too low }
\end{array}
$$

Because 27 is closer to 27.04 than $26.01, \sqrt{27}$ is closer to 5.2 than to 5.1.

Check On a calculator $\sqrt{27} \approx 5.1961524 \approx 5.1$ rounded to the nearest tenth. \checkmark
Holt Algebra 2

1-3 Square Roots

Properties of Square Roots

For $a \geq 0$ and $b>0$,		
WORDS	NUMBERS	ALGEBRA
Product Property of Square Roots The square root of a product is equal to the product of the square roots of the factors.	$\begin{aligned} \sqrt{12}= & \sqrt{4 \cdot 3} \\ = & \sqrt{4} \cdot \sqrt{3}=2 \sqrt{3} \\ \sqrt{8} \cdot \sqrt{2} & =\sqrt{8 \cdot 2} \\ & =\sqrt{16}=4 \end{aligned}$	$\begin{aligned} & \sqrt{a b}=\sqrt{a} \cdot \sqrt{b} \\ & \sqrt{a} \cdot \sqrt{b}=\sqrt{a b} \end{aligned}$
Quotient Property of Square Roots The square root of a quotient is equal to the quotient of the square roots of the dividend and the divisor.	$\begin{gathered} \sqrt{\frac{25}{16}}=\frac{\sqrt{25}}{\sqrt{16}}=\frac{5}{4} \\ \frac{\sqrt{18}}{\sqrt{2}}=\sqrt{\frac{18}{2}}=\sqrt{9}=3 \end{gathered}$	$\begin{aligned} & \sqrt{\frac{a}{b}}=\frac{\sqrt{a}}{\sqrt{b}} \\ & \frac{\sqrt{a}}{\sqrt{b}}=\sqrt{\frac{a}{b}} \end{aligned}$

Because 55 is closer to 54.76 than $51.84,-\sqrt{55}$ is closer to 7.4 than to 7.2.

Check On a calculator $-\sqrt{55} \approx-7.4161984 \approx-7.4$ rounded to the nearest tenth. \checkmark

Square Roots

Check It Out! Example 1

Estimate $-\sqrt{55}$ to the nearest tenth.

$$
-\sqrt{49}<-\sqrt{55}<-\sqrt{64}
$$

$$
-7<-\sqrt{55}<-8 \quad \text { Find the two integers that }
$$ lies between $-\sqrt{55}$.

Because -55 is closer to -49 than to $-64,-\sqrt{55}$ is closer to -7 than to -8.

$$
\begin{array}{rll}
\text { Try 7.2: } 7.2^{2}=51.84 & \text { Too low, try } 7.4 \\
7.4^{2}=54.76 & \text { Too low but very close }
\end{array}
$$

1-3 Square Roots

Example 2: Simplifying Square-Root Expressions Simplify each expression.
A. $\sqrt{32}$

$\sqrt{16 \cdot 2}$	Find a perfect square factor of 32.
$\sqrt{16} \cdot \sqrt{2}$	Product Property of Square Roots
$4 \sqrt{2}$	

B. $\sqrt{\frac{25}{36}}$
$\sqrt{36}$
$\sqrt{25}$
$\sqrt{36}$
5 $\frac{5}{6}$

Holt Algebra 2
Quotient Property of Square Roots

1-3 Square Roots

Check It Out! Example 2
Simplify each expression.
A. $\sqrt{48}$

$\sqrt{16 \cdot 3}$	Find a perfect square factor of 48.
$\sqrt{16} \cdot \sqrt{3}$	Product Property of Square Roots
$4 \sqrt{3}$	

B. $\sqrt{\frac{36}{16}}$
$\frac{\sqrt{36}}{\sqrt{16}} \quad$ Quotient Property of Square Roots
$\frac{6}{4}=\frac{3}{2} \quad$ Simplify.
Holt Algebra 2

1-3 Square Roots

If a fraction has a denominator that is a square root, you can simplify it by rationalizing the denominator. To do this, multiply both the numerator and denominator by a number that produces a perfect square under the radical sign in the denominator.

1-3 Square Roots

Example 2: Simplifying Square-Root Expressions
Simplify each expression.
C. $\sqrt{3} \cdot \sqrt{12}$

$$
\begin{array}{ll}
\sqrt{3 \cdot 12} & \text { Product Property of Square Roots } \\
\sqrt{36}=6 &
\end{array}
$$

D. $\sqrt{500}$
$\sqrt{5}$
$\sqrt{\frac{500}{5}} \quad$ Quotient Property of Square Roots
$\sqrt{100}=10$
Holt Algebra 2

1-3 Square Roots

Check It Out! Example 2

Simplify each expression.
C. $\sqrt{5} \cdot \sqrt{20}$

$\sqrt{5 \cdot 20}$	Product Property of Square Roots
$\sqrt{100}=10$	

D. $\sqrt{147}$
$\sqrt{3}$
$\sqrt{\frac{147}{3}} \quad$ Quotient Property of Square Roots
$\sqrt{49}=7$
Holt Algebra 2

1-3 Square Roots

Example 3: Rationalizing the Denominator
Simplify by rationalizing the denominator.

$$
\begin{array}{ll}
\frac{3 \sqrt{5}}{\sqrt{2}} & \\
\frac{3 \sqrt{5}}{\sqrt{2}} \cdot \frac{\sqrt{2}}{\sqrt{2}} & \text { Multiply by a form of } 1 . \\
\frac{3 \sqrt{5 \cdot 2}}{2} & \sqrt{2} \cdot \sqrt{2}=2 \\
\frac{3 \sqrt{10}}{2} &
\end{array}
$$

$$
\text { Holt Algebra } 2
$$

1-3 Square Roots

Example 3: Rationalizing the Denominator
Simplify the expression.
$\frac{\sqrt{2}}{\sqrt{8}}$

$\frac{\sqrt{2}}{\sqrt{8}} \cdot \frac{\sqrt{8}}{\sqrt{8}}$	Multiply by a form of 1.
$\frac{\sqrt{2 \cdot 8}}{8}$	$\sqrt{8} \cdot \sqrt{8}=8$
$\frac{\sqrt{16}}{8}=\frac{4}{8}=\frac{1}{2}$	$\sqrt{16}=4$

Holt Algebra 2

1-3 Square Roots

Check It Out! Example 3b
Simplify by rationalizing the denominator.

$$
\frac{5}{\sqrt{10}}
$$

$$
\frac{5}{\sqrt{10}} \cdot \frac{\sqrt{10}}{\sqrt{10}} \quad \text { Multiply by a form of } 1
$$

$$
\frac{5 \sqrt{10}}{10}=\frac{\sqrt{10}}{2} \quad \sqrt{10} \cdot \sqrt{10}=10
$$

Holt Algebra 2

1-3 Square Roots

Example 4: Adding and Subtracting Square Roots
Add.
$9 \sqrt{3}+7 \sqrt{3}$
$(9+7) \sqrt{3}$
$16 \sqrt{3}$

Holt Algebra 2

1-3 Square Roots

Check It Out! Example 3a
Simplify by rationalizing the denominator.

$$
\begin{array}{ll}
\frac{3 \sqrt{5}}{\sqrt{7}} & \\
\frac{3 \sqrt{5}}{\sqrt{7}} \cdot \frac{\sqrt{7}}{\sqrt{7}} & \text { Multiply by a form of } 1 \\
\frac{3 \sqrt{5 \cdot 7}}{7} & \sqrt{7} \cdot \sqrt{7}=7 \\
\frac{3 \sqrt{35}}{7} &
\end{array}
$$

Holt Algebra 2

1-3 Square Roots

Square roots that have the same radicand are called like radical terms.

Like Radicals	$\sqrt{2}$ and $3 \sqrt{2}$	$-6 \sqrt{15}$ and $7 \sqrt{15}$	$\sqrt{a b^{2}}$ and $4 \sqrt{a b^{2}}$
Unlike Radicals	$2 \sqrt{5}$ and $\sqrt{2}$	\sqrt{x} and $\sqrt{3 x}$	$\sqrt{x y^{2}}$ and $\sqrt{x^{2} y}$

To add or subtract square roots, first simplify each radical term and then combine like radical terms by adding or subtracting their coefficients.

Holt Algebra 2

1-3 Square Roots

Example 4: Adding and Subtracting Square Roots
Subtract.

$6 \sqrt{5}-\sqrt{20}$	
$6 \sqrt{5}-\sqrt{4 \cdot 5}$	Simplify radical terms.
$6 \sqrt{5}-2 \sqrt{5}$	
$(6-2) \sqrt{5}$	Combine like radical terms.
$4 \sqrt{5}$	
Algebra 2	

$6 \sqrt{5}-\sqrt{4.5} \quad$ Simplify radical terms.
$6 \sqrt{5}-2 \sqrt{5}$
$(6-2) \sqrt{5} \quad$ Combine like radical terms.
$4 \sqrt{5}$

Holt Algebra 2

1-3 Square Roots

Check It Out! Example 4a
Add or subtract.
$3 \sqrt{5}+10 \sqrt{5}$
$(3+10) \sqrt{5} \quad$ Combine like radical terms.
$13 \sqrt{5}$

Holt Algebra 2

1-3 Square Roots

Check It Out! Example 4b

Add or subtract.
$\sqrt{80}-5 \sqrt{5}$
$\sqrt{16 \cdot 5}-5 \sqrt{5} \quad$ Simplify radical terms.
$4 \sqrt{5}-5 \sqrt{5}$
$(4-5) \sqrt{5} \quad$ Combine like radical terms.
$-\sqrt{5}$
Holt Algebra 2

