Starter 1.3 Round to the <u>ne</u>	arest tenth.
1. 3.14 3.1	2. 1.97 2.0
Find each square	e root.
3. √16 4	4. √625 25
Write each fract	ion in <u>simplest form</u> .
5. $\frac{24}{72}$ $\frac{1}{3}$ Simplify.	6. $\frac{169}{182}$ $\frac{13}{14}$
7. $\frac{1}{3}$, $\frac{5}{3}$, $\frac{5}{9}$	8. $\frac{12}{18} \cdot \frac{6}{21} = \frac{4}{21}$

	abulary lical symbol (√)
• Rad	lical symbol $()$ licand — number or expression under the ical symbol
	n cipal root — positive square root of a nber
• rat	ionalize the denominator
	e radical terms

Holt Algebra 2

fect Squa	ares		
Number	Square	Number	Square
1	1	11	121
2	4	12	144
3	9	13	169
4	16	14	196
5	25	15	225
6	36	16	256
7	49	17	289
8	64	18	324
9	81	19	361
10	100	20	400

1-3 Square Roots				
Example 1: Estimating Square Roots Estimate $\sqrt{27}$ to the nearest tenth.				
$\sqrt{25} < \sqrt{27} < \sqrt{36}$	Find the two perfect squares that 27 lies between.			
5 <\sqrt{27} < 6	Find the two integers that lies between $\sqrt{27}$.			
Because 27 is closer to 25 than t	o 36, $\sqrt{27}$ is close to 5 than to 6.			
Try 5.2: 5.2 ² = 27.04 5.1 ² = 26.01	Too high, try 5.1. Too low			
Because 27 is closer to 27.04 than 26.01, $\sqrt{27}$ is closer to 5.2 than to 5.1.				
Check On a calculator $\sqrt{27} \approx 5.1961524 \approx 5.1$ rounded to the nearest tenth. \checkmark				
Holt Algebra 2				

1-3 Square Roots		
Check It Out! Example 1 Estimate $-\sqrt{55}$ to the nearest tenth.		
$-\sqrt{49} < -\sqrt{55} < -\sqrt{64}$	Find the two perfect squares that –55 lies between.	
- 7 <-√55 < -8	Find the two integers that lies between $-\sqrt{55}$.	
Because –55 is closer to –49 than to –64, $-\sqrt{55}$ is closer to –7 than to –8.		
Try 7.2: 7.2 ² = 51.84	Too low, try 7.4	
7.4 ² = 54.76	Too low but very close	
Because 55 is closer to 54.76 than 51.84, – $\sqrt{55}$ is closer to 7.4 than to 7.2.		
Check On a calculator $-\sqrt{5}$ rounded to the nearest tent		
Holt Algebra 2		

roperties of Square Roots)	
For $a \ge 0$ and $b > 0$, WORDS	NUMBERS	ALGEBRA
Product Property of Square Roots The square root of a product is equal to the product of the square roots of the factors.	$\sqrt{12} = \sqrt{4 \cdot 3}$ $= \sqrt{4} \cdot \sqrt{3} = 2\sqrt{3}$ $\sqrt{8} \cdot \sqrt{2} = \sqrt{8 \cdot 2}$ $= \sqrt{16} = 4$	$\sqrt{ab} = \sqrt{a} \cdot \sqrt{b}$ $\sqrt{a} \cdot \sqrt{b} = \sqrt{ab}$
Quotient Property of Square Roots The square root of a quotient is equal to the quotient of the square roots of the dividend and the divisor.	$\sqrt{\frac{25}{16}} = \frac{\sqrt{25}}{\sqrt{16}} = \frac{5}{4}$ $\frac{\sqrt{18}}{\sqrt{2}} = \sqrt{\frac{18}{2}} = \sqrt{9} = 3$	$\sqrt{\frac{a}{b}} = \frac{\sqrt{a}}{\sqrt{b}}$ $\frac{\sqrt{a}}{\sqrt{b}} = \sqrt{\frac{a}{b}}$

1-3	Squa	are Roots
1	-	mplifying Square-Root Expressions ch expression.
A.	√32	
	√16•2	Find a perfect square factor of 32.
	√16•√2	Product Property of Square Roots
	4√2	
В.	$\sqrt{\frac{25}{36}}$	
	$\sqrt{25}$	Quotient Property of Square Roots
	$\sqrt{36}$	Quotient roperty of Square roots
	5 6	
Holt Alge	bra 2	

1-3) Squa	re Roots		
Example 2: Simplifying Square-Root Expressions				
Simplify each expression.				
C .	$\sqrt{3}$ • $\sqrt{12}$			
	√3•12	Product Property of Square Roots		
	$\sqrt{36}=6$			
D.	$ \frac{\sqrt{500}}{\sqrt{5}} $ $ \sqrt{\frac{500}{5}} $	Quotient Property of Square Roots		
	$\sqrt{100} = 10$			
Holt Alg	ebra 2			

1-3	Squa	are Roots			
	Check It Out! Example 2				
Sin	Simplify each expression.				
A.	$\sqrt{48}$				
	√16•3	Find a perfect square factor of 48.			
	√16•√3	Product Property of Square Roots			
	4√3				
в.	36				
.	<u>16</u>				
	$\frac{\sqrt{36}}{\sqrt{16}}$	Quotient Property of Square Roots			
	6_3	Simplify.			
	$\frac{1}{4} = \frac{1}{2}$				
Holt Alg	ebra 2				

1-3	Square Roots
	Check It Out! Example 2
Simpli	ify each expression.
C. √5	5•√20 /5•20 Product Property of Square Roots
V	$\sqrt{100} = 10$
D. $\frac{\sqrt{1}}{\sqrt{1}}$	<u>47</u> 3
$\sqrt{-}$	47 Quotient Property of Square Roots 3
$\sqrt{4}$	19 = 7
Holt Algebra 2	2

1-3 Square Roots

Holt Algebra 2

If a fraction has a denominator that is a square root, you can simplify it by **rationalizing the denominator**. To do this, multiply both the numerator and denominator by a number that produces a perfect square under the radical sign in the denominator.

1-3 Square Roots Example 3: Rationalizing the Denominator Simplify by rationalizing the denominator. $\frac{3\sqrt{5}}{\sqrt{2}}$ $\frac{3\sqrt{5}}{\sqrt{2}}, \sqrt{2}$ $\frac{3\sqrt{5}}{\sqrt{2}}, \sqrt{2}$ $\frac{3\sqrt{5\cdot2}}{2}$ $\frac{3\sqrt{5\cdot2}}{2}$ $\sqrt{2}\cdot\sqrt{2} = 2$ $\frac{3\sqrt{10}}{2}$ Holt Algebra 2

1-3 Square	Roots		
Check It Out! Example 3a			
Simplify by rationalizing the denominator.			
$\frac{3\sqrt{5}}{\sqrt{7}}$			
$\frac{3\sqrt{5}}{\sqrt{7}} \cdot \frac{\sqrt{7}}{\sqrt{7}}$	Multiply by a form of 1.		
$\frac{3\sqrt{5\cdot7}}{7}$	$\sqrt{7} \cdot \sqrt{7} = 7$		
$\frac{3\sqrt{35}}{7}$			
Holt Algebra 2			

1-3 Square	Roots		
Check It Out! Example 3b			
Simplify by rationalizing the denominator.			
$\frac{5}{\sqrt{10}}$			
$\frac{5}{\sqrt{10}}, \frac{\sqrt{10}}{\sqrt{10}}$	Multiply by a form of 1.		
$\frac{5\sqrt{10}}{10} = \frac{\sqrt{10}}{2}$	$\sqrt{10}$ • $\sqrt{10}$ = 10		
Holt Algebra 2			

Square roo	are Root ots that hav radical te	ve the same ra	dicand are	
Like Radicals	$\sqrt{2}$ and $3\sqrt{2}$	$-6\sqrt{15}$ and $7\sqrt{15}$	$\sqrt{ab^2}$ and $4\sqrt{ab^2}$	
Unlike Radicals	$2\sqrt{5}$ and $\sqrt{2}$	\sqrt{x} and $\sqrt{3x}$	$\sqrt{xy^2}$ and $\sqrt{x^2y}$	
To add or subtract square roots, first simplify each radical term and then combine like radical terms by adding or subtracting their coefficients.				
Holt Algebra 2				

1-3 So Example 4	quare l: Addi		cting S	quare F	loots
Add.					
9√3+	7√3				
(9+7))√3				
16√	3				

1-3 Square	Roots
-	g and Subtracting Square Roots
Subtract.	
$6\sqrt{5}-\sqrt{20}$	
$6\sqrt{5}-\sqrt{4.5}$	Simplify radical terms.
$6\sqrt{5}-2\sqrt{5}$	
(6−2) √5	Combine like radical terms.
4√5	
Holt Algebra 2	

1-3 Square F	loots		
Check It Out! Example 4a			
Add or subtract.			
$3\sqrt{5} + 10\sqrt{5}$			
$(3+10)\sqrt{5}$	Combine like radical terms.		
13√5			
Holt Algebra 2			

1-3 Square Roots				
Check It Out! Example 4b				
Add or subtract.				
$\sqrt{80}-5\sqrt{5}$				
$\sqrt{16.5} - 5\sqrt{5}$	Simplify radical terms.			
$4\sqrt{5}-5\sqrt{5}$				
$(4-5)\sqrt{5}$	Combine like radical terms.			
-√5				
Holt Algebra 2				