1-5 Properties of Exponents

Starter 1.5 HW 1.3???, Short Quiz 1.3 \& 1.4 Simplify.

1. 4 • 4 • 464
2. $\frac{1}{2 \cdot 2 \cdot 2 \cdot 2} \frac{1}{16}$
3. $\frac{10.10 .2}{10} 20$
4. $\left(\frac{2}{3}\right)^{2} \frac{4}{9}$
5. $\frac{1}{4^{2}} \frac{1}{16}$
6. $10^{5} 100,000$
7. $3 \times 10^{4} 30,000$

1-5 Properties of Exponents

Vocabulary

scientific notation

1-5 Properties of Exponents

When the base includes more than one symbol, it is written in parentheses.

Exponential Form	Base	Expanded Form
$-2 x^{3}$	x	$-2(x \cdot x \cdot x)$
$-(2 x)^{3}$	$2 x$	$-(2 x)(2 x)(2 x)$
$(-2 x)^{3}$	$-2 x$	$(-2 x)(-2 x)(-2 x)$

Reading Math

A power includes a base and an exponent. The expression 2^{3} is a power of 2 . It is read " 2 to the third power" or "2 cubed."

1-5 Properties of Exponents

Objectives

Simplify expressions involving exponents.
Use scientific notation.

1-5 Properties of Exponents

In an expression of the form $\boldsymbol{a}^{\boldsymbol{n}}, \boldsymbol{a}$ is the base, \boldsymbol{n} is the exponent, and the quantity $\boldsymbol{a}^{\boldsymbol{n}}$ is called a power. The exponent indicates the number of times that the base is used as a factor.

1-5 Properties of Exponents

Example 1A: Writing Exponential Expressions in Expanded Form
Write the expression in expanded form.
$(5 z)^{2}$
$(5 z)^{2} \quad$ The base is $5 z$, and the exponent is 2.
$(5 z)(5 z) \quad 5 z$ is a factor 2 times.

1-5 Properties of Exponents

Example 1B: Writing Exponential Expressions in Expanded Form
Write the expression in expanded form.

$-s^{4}$	The base is s, and the exponent is 4.
$-s^{4}$	s is a factor 4 times.
$-(s \bullet s \cdot s \cdot s)=-s \bullet s \bullet s \bullet s$	

1-5 Properties of Exponents

Check It Out! Example 1a

Write the expression in expanded form.
$(2 a)^{5}$
$(2 a)^{5}$
The base is 2 a , and the exponent is 5 .
$(2 a)(2 a)(2 a)(2 a)(2 a) \quad 2 a$ is a factor 5 times.

1-5 Properties of Exponents

Example 1C: Writing Exponential Expressions in Expanded Form
Write the expression in expanded form.
$3 h^{3}(k+3)^{2}$
$3 h^{3}(k+3)^{2} \quad$ There are two bases: h and $k+3$.
$3(h)(h)(h)(k+3)(k+3) \begin{aligned} & h \text { is a factor } 3 \text { times, and } k+3 \text { is } \\ & \text { a factor } 2 \text { times. }\end{aligned}$

1-5 Properties of Exponents

Check It Out! Example 1b

Write the expression in expanded form.
$3 \boldsymbol{b}^{4}$
$3 b^{4} \quad$ The base is b, and the exponent is 4.
$3 \bullet b \bullet b \cdot b \cdot b \quad b$ is a factor 4 times.

1-5 Properties of Exponents

Zero and Negative Exponents
For all nonzero real numbers a and integers n,

WORDS	NUMBERS	ALGEBRA
Zero Exponent Property A nonzero quantity raised to the zero power is equal to 1.	$100^{0}=1$	$a^{0}=1$
Negative Exponent Property A nonzero base raised to a negative exponent is equal to the reciprocal of the base raised to the opposite, positive exponent.	$7^{-2}=\left(\frac{1}{7}\right)^{2}=\frac{1}{7^{2}}$	$a^{-n}=\left(\frac{1}{a}\right)^{n}=\frac{1}{a^{n}}$

$-(\mathbf{2 x}-\mathbf{1})(\mathbf{2 x}-\mathbf{1})(\mathbf{2 x}-\mathbf{1}) \cdot \boldsymbol{y} \cdot \boldsymbol{y} \quad \begin{aligned} & 2 x-1 \text { is a factor } 3 \\ & \text { times, and } y \text { is a factor }\end{aligned}$ 2 times.

1-5 Properties of Exponents

Caution!

Do not confuse a negative exponent with a negative expression.

$$
\mathbf{a}^{-n} \neq-\mathbf{a}^{n} \neq \frac{1}{-\mathbf{a}^{n}}
$$

1-5 Properties of Exponents

Example 2B: Simplifying Expressions with Negative Exponents
Simplify the expression.
$\left(\frac{2}{3}\right)^{-2}$
$\left(\frac{3}{2}\right)^{2} \quad$ The reciprocal of $\left(\frac{2}{3}\right)$ is $\left(\frac{3}{2}\right)$
$\frac{3}{2} \cdot \frac{3}{2}=\frac{9}{4}$
$1-5$ Properties of Exponents
Check It Out! Example 2b
Write the expression in expanded form.
$(-5)^{-5}$
$\left(-\frac{1}{5}\right)^{5} \quad$ The reciprocal of -5 is $-\frac{1}{5}$.
$\left(-\frac{1}{5}\right)\left(-\frac{1}{5}\right)\left(-\frac{1}{5}\right)\left(-\frac{1}{5}\right)\left(-\frac{1}{5}\right)=-\frac{1}{3125}$

1-5 Properties of Exponents

Example 2A: Simplifying Expressions with Negative

 ExponentsSimplify the expression.
3^{-2}
$\frac{1}{3^{2}} \quad$ The reciprocal of 3 is $\frac{1}{3}$.
$\frac{1}{3 \cdot 3}=\frac{1}{9}$

1-5 Properties of Exponents

Check It Out! Example 2a

Simplify the expression.

$$
\begin{array}{ll}
\left(\frac{\mathbf{1}}{\mathbf{3}}\right)^{-2} & \\
3^{2} & \text { The reciprocal of } \frac{1}{3} \text { is } 3 .
\end{array}
$$

$3 \cdot 3=9$

1-5 Properties of Exponents

Example 3A: Using Properties of Exponents to Simplify Expressions
Simplify the expression. Assume all variables are nonzero.

$$
\begin{array}{cl}
3 z^{7}\left(-4 z^{2}\right) & \\
3 \cdot(-4) \cdot z^{7} \cdot z^{2} & \\
-12 z^{7+2} & \text { Product of Powers } \\
-12 z^{9} & \text { Simplify. }
\end{array}
$$

1-5 Properties of Exponents

Check It Out! Example 3a

Simplify the expression. Assume all variables are nonzero.

$$
\begin{array}{ll}
\left(5 x^{6}\right)^{3} & \\
5^{3}\left(x^{6}\right)^{3} & \text { Power of a Product } \\
125 x^{(6)(3)} & \text { Power of a Power } \\
125 x^{18} &
\end{array}
$$

1-5 Properties of Exponents

Scientific notation is a method of writing numbers by using powers of 10 . In scientific notation, a number takes a form $m \times 10^{n}$, where $1 \leq m<10$ and n is an integer.

Scientific Notation	Move the decimal	Standard Notation
1.275×10^{7}	Right 7 places	$12,750,000$
3.5×10^{-7}	Left 7 places	0.00000035

You can use the properties of exponents to calculate with numbers expressed in scientific notation.

1-5 Properties of Exponents

Example 3B: Using Properties of Exponents to Simplify Expressions
Simplify the expression. Assume all variables are nonzero.

$$
\begin{array}{cl}
\left(\frac{y z^{3}}{z^{5}}\right)^{3} & \\
\left(y z^{3-5}\right)^{3}=\left(y z^{-2}\right)^{3} & \text { Quotient of Powers } \\
y^{3}\left(z^{-2}\right)^{3} & \text { Power of a Product } \\
y^{3} z^{(-2)(3)} & \text { Power of a Product } \\
y^{3} z^{-6}=\frac{y^{3}}{z^{6}} & \text { Negative of Exponent Property }
\end{array}
$$

1-5 Properties of Exponents

Check It Out! Example 3b

Simplify the expression. Assume all variables are nonzero.

$$
\begin{array}{ll}
\left(-2 a^{3} b\right)^{-3} & \\
\frac{1}{\left(-2 a^{3} b\right)^{3}} & \text { Negative Exponent Property } \\
\frac{1}{(-2)^{(3)} a^{(3)(3)} b^{(3)}} & \text { Power of a Power } \\
-\frac{1}{8 a^{9} b^{3}} &
\end{array}
$$

1-5 Properties of Exponents

Example 4A: Simplifying Expressions Involving Scientific Notation
Simplify the expression. Write the answer in scientific notation.

$$
\begin{array}{ll}
\frac{4.5 \times 10^{-5}}{1.5 \times 10^{6}} & \\
\left(\frac{4.5}{1.5}\right) \times\left(\frac{10^{-5}}{10^{6}}\right) & \frac{a \cdot b}{c \cdot b}=\frac{a}{c} \cdot \frac{b}{d} \\
3.0 \times 10^{-11} & \begin{array}{l}
\text { Divide } 4.5 \text { by } 1.5 \text { and subtract } \\
\text { exponents: }-5-6=-11 .
\end{array}
\end{array}
$$

1-5 Properties of Exponents

Example 4B: Simplifying Expressions Involving Scientific Notation
Simplify the expression. Write the answer in scientific notation.

$$
\begin{aligned}
& \left(\mathbf{2 . 6} \times \mathbf{1 0}^{\mathbf{4}}\right)\left(\mathbf{8 . 5} \times \mathbf{1 0}^{\mathbf{7}}\right) \\
& (2.6)(8.5) \times\left(10^{4}\right)\left(10^{7}\right)
\end{aligned}
$$

$$
22.1 \times 10^{11}
$$

Multiply 2.6 and 8.5 and add exponents: $4+7=11$.
$2,2,1 \times 10^{12}$
Because 22.1 > 10, move the decimal point left 1 place and add 1 to the exponent.

1-5 Properties of Exponents

Check It Out! Example 4a

Simplify the expression. Write the answer in scientific notation.

$$
2.325 \times 10^{6}
$$

$$
9.3 \times 10^{9}
$$

$$
\left(\frac{2.325}{9.3}\right) \times\left(\frac{10^{6}}{10^{9}}\right)
$$

$$
\frac{a \cdot b}{c \cdot b}=\frac{a}{c} \cdot \frac{b}{d}
$$

0.25×10^{-3}
Divide 2.325 by 9.3 and subtract exponents: 6-9 =-3.
$2.5 \times 10^{-4} \quad \begin{aligned} & \text { Because } 0.25<10 \text {, move the decimal } \\ & \text { point right } 1 \text { place and subtract } 1 \text { from }\end{aligned}$ the exponent.

1-5 Properties of Exponents

Check It Out! Example 4b
Simplify the expression. Write the answer in scientific notation.
$\left(4 \times 10^{-6}\right)\left(3.1 \times 10^{-4}\right)$
$(4)(3.1) \times\left(10^{-6}\right)\left(10^{-4}\right)$
$12.4 \times 10^{-10} \quad$ Multiply 4 by 3.1 and add exponents: $-6-4=-10$.

Because $12.4>10$, move the decimal $1.24 \times 10^{-9} \quad$ point left 1 place and add 1 to the exponent.

1-5 Properties of Exponents

Example 5: Problem-Solving Application

Light travels through space at a speed of about 3×10^{5} kilometers per second. Pluto is approximately $5.9 \times \mathbf{1 0}^{12} \mathbf{~ m}$ from the Sun. How many minutes, on average, does it take light to travel from the Sun to Pluto?

1-5 Properties of Exponents

Example 5 Continued

Understand the Problem

The answer will be the time it takes for light to travel from the Sun to Pluto.

List the important information:

- The speed of light in space is about 3×10^{5} kilometers per second.
- The distance from the Sun to Pluto is 5.9×10^{12} meters.

1-5 Properties of Exponents

Example 5 Continued

Make a Plan

Use the relationship: rate, or speed, equals distance divided by time.
speed $=\frac{\text { distance }}{\text { time }}$, so time $=\frac{\text { distance }}{\text { speed }}$

1-5 Properties of Exponents

Example 5 Continued

Look Back
Light travels at $3 \times 10^{5} \mathrm{~km} / \mathrm{s}$ for $328(60) \approx 19,666$ seconds travels a distance of 5,899,560,000 $=$ $5.89 \times 10^{9} \mathrm{~km}$ or $5.89 \times 10^{12} \mathrm{~m}$. The answer is reasonable.

1-5 Properties of Exponents

Example 5 Continued

Solve

Use the relationship between time, distance, and speed to find the number of minutes it takes light to travel from the Sun to Pluto.

$$
\begin{aligned}
\text { time } & =\frac{\text { distance }}{\text { speed }}=\frac{5.9 \times 10^{12} \mathrm{~m}}{1.8 \times 10^{10} \frac{\mathrm{~m}}{\mathrm{~min}}} \quad \frac{\mathrm{~m}}{\left(\frac{\mathrm{~m}}{\mathrm{~min}}\right)}=\not x\left(\frac{\mathrm{~min}}{\not m}\right)=\min \\
& =3.2 \overline{7} \times 10^{2} \mathrm{~min} \approx 328 \mathrm{~min}
\end{aligned}
$$

It takes light approximately 328 minutes to travel from the Sun to Pluto.

1-5 Properties of Exponents

Check It Out! Example 5

Light travels through space at a speed of about 3×10^{5} kilometers per second. Earth is approximately $1.5 \times \mathbf{1 0}^{\mathbf{1 1}} \mathbf{~ m}$ from the Sun. How many minutes, on average, does it take light to travel from the Sun to Earth?

1-5 Properties of Exponents

Check It Out! Example 5 Continued

Make a Plan

Use the relationship: rate, or speed, equals distance divided by time.

$$
\text { speed }=\frac{\text { distance }}{\text { time }} \text {, so time }=\frac{\text { distance }}{\text { speed }}
$$

Algebra 2 / Trigonometry
1.5: Properties of Exponents

Concord High
RNBriones

1-5 Properties of Exponents

Check It Out! Example 5 Continued

Solve

First, convert the speed of light from $\frac{\text { kilometers }}{\text { seconds }}$ to $\frac{\text { meters }}{\text { minute }}$

$$
\begin{array}{ll}
3 \times 10^{5} \frac{\mathrm{~km}}{\mathrm{~s}}\left(\frac{10^{3} \mathrm{~m}}{1 \mathrm{k} \times \mathrm{m}}\right)\left(\frac{60 \mathrm{~s}}{1 \mathrm{~min}}\right) & \begin{array}{l}
\text { There are } 1000, \text { or } 10^{3} \text { meters } \\
\text { in every kilometers and } 60 \\
\text { seconds in every minute }
\end{array} \\
(3 \cdot 60) \times\left(10^{5} \cdot 10^{3}\right) \frac{\mathrm{m}}{\mathrm{~min}} & \\
180 \times 10^{6} \frac{\mathrm{~m}}{\mathrm{~min}}=1.8 \times 10^{10} \frac{\mathrm{~m}}{\mathrm{~min}} &
\end{array}
$$

1-5 Properties of Exponents

Check It Out! Example 5 Continued

Solve
Use the relationship between time, distance, and speed to find the number of minutes it takes light to travel from the Sun to Earth.
time $=\frac{\text { distance }}{\text { speed }}=\frac{1.5 \times 10^{11} \mathrm{~m}}{1.8 \times 10^{10} \frac{\mathrm{~m}}{\mathrm{~min}}} \quad \frac{m}{\left(\frac{m}{m i n}\right)}=\eta \eta\left(\frac{\mathrm{min}}{\not m}\right)=\mathrm{min}$
$0.8 \overline{3} \times 10^{1} \mathrm{~min} \approx 8 . \overline{3} \mathrm{~min}$
It takes light approximately 8.333 minutes to travel from the Sun to Earth.

1-5 Properties of Exponents

Check It Out! Example 5 Continued

Look Back
Light travels at $1.49 \times 10^{8} \mathrm{~km}$ or $1.49 \times 10^{11} \mathrm{~m}$ for $8.33(60) \approx 499.99$ seconds travels a distance of 149,999,400 $=3 \times 10^{5}$ kilometers per second.

The answer is reasonable.

