## 1-7 Function Notation

Starter 1.7
HW 1.6???
Evaluate.

1. $5 x-2$ when $x=4 \quad 18$
2. $3 x^{2}+4 x-1$ when $x=594$
3. $2 x+4 \sqrt{x}$ when $x=1648$
4. $2-t^{2}$ when $t=\frac{1}{2}$. $1 \frac{3}{4}$
5. Give the domain and range for this relation: $\{(1,1),(-1,1),(2,4),(-2,4)$, $(-3,9),(3,9)\}$. D: $\{-3,-2,-1,1,2,3\} \quad R:\{1,4,9\}$

## 1-7 Function Notation

Function Notation- the set of ordered pairs described by an equation

| Output value | Input value | $y=f(x)$ |
| :---: | :---: | :---: |
| $f(x)$ |  | " $y$ is in terms |
| of $x$ eq | 5 times $x$ | of $x$ " |


$f$ of 1 equals 5 times 1 plus 3 .

## 1-7 Function Notation

Example 1: Evaluating Functions
For each function, evaluate $f(0), f\left(\frac{1}{2}\right)$, and $f(-2)$.
$f(x)=8+4 x$
Substitute each value for $x$ and evaluate.
$f(0)=8+4(0)=8$
$f\left(\frac{1}{2}\right)=8+4\left(\frac{1}{2}\right)=10$
$f(-2)=8+4(-2)=0$

## 1-7 Function Notation

Function Notation- the set of ordered pairs described by an equation


## 1-7 Function Notation

In the notation $f(x), f$ is the name of the function.

## Caution

$f(x)$ is NOT " $f$ times $x$ " or " $f$ multiplied by $x$." $f(x)$ means "the value of $f$ at $x$." So $f(1)$
represents the value of $f$ at $x=1$

## 1-7 Function Notation

## Example 1: Evaluating Functions

For each function, evaluate $\boldsymbol{f}(0), \boldsymbol{f}\left(\frac{1}{2}\right)$, and
$\boldsymbol{f}(-2)$.
Use the graph to find the corresponding $y$-value for each $x$-value.

$$
f(0)=3
$$

$f\left(\frac{1}{2}\right)=0$
$f(-2)=4$


## 1-7 Function Notation

## Check It Out! Example 1a

For each function, evaluate $f(0), f\left(\frac{1}{2}\right)$, and $f(-2)$.
$f(x)=x^{2}-4 x$
$f(0)=0^{2}-4(0)=0$
$f\left(\frac{1}{2}\right)=\left(\frac{1}{2}\right)^{2}-4\left(\frac{1}{2}\right)=\frac{1}{4}-\frac{8}{4}=-\frac{7}{4}$
$f(-2)=(-2)^{2}-4(-2)=4+8=12$

## 1-7 Function Notation

## Check It Out! Example 1b

For each function, evaluate $f(0), f\left(\frac{1}{2}\right)$, and $f(-2)$.

$$
f(x)=-2 x+1
$$

$$
f(0)=-2(0)+1=1
$$

$$
f\left(\frac{1}{2}\right)=-2\left(\frac{1}{2}\right)+1=-1+1=0
$$

$$
f(-2)=-2(-2)+1=4+1=5
$$

## 1-7) Function Notation

$$
\underbrace{d(t)}_{\text {Dependent variable }}=65 t
$$



## 1-7 Function Notation

Example 2B: Graphing Functions
Graph the function $f(x)=3 x-1$.
Make a table.

| $x$ | $3 x-1$ | $f(x)$ |
| :---: | :---: | :---: |
| -1 | $3(-1)-1$ | -4 |
| 0 | $3(0)-1$ | -1 |
| 1 | $3(1)-1$ | 2 |

Graph the points.


Connect the points with a line because the function is defined for all real numbers.

## 1-7 Function Notation

Check It Out! Example 2a
Graph the function.

| 3 | 5 | 7 | 9 |
| :---: | :---: | :---: | :---: |
|  | 1 | 1 |  |
| 2 | 6 | 10 |  |

Graph the points.
Do not connect the points because the values between the given points have not been defined.


## 1-7) Function Notation

## Check It Out! Example 2b

Graph the function $f(x)=2 x+1$.
Make a table.

| $x$ | $2 x+1$ | $f(x)$ |
| :---: | :---: | :---: |
| -1 | $2(-1)+1$ | -1 |
| 0 | $2(0)+1$ | 1 |
| 1 | $2(1)+1$ | 3 |

Graph the points.


Connect the points with a line because the function is defined for all real numbers.

## 1-7 Function Notation

## Example 3A: Entertainment Application

A carnival charges a $\$ 5$ entrance fee and $\$ 2$ per ride.
Write a function to represent the total cost after taking a certain number of rides.
Let $r$ be the number of rides and let $C$ be the total cost in dollars. The entrance fee is constant.
First, identify the independent and dependent variables.
Cost depends on the entrance fee plus the number of rides taken


Cost $=$ entrance fee + number of rides taken

$$
\mathrm{C}(r)=5+2 r \quad \text { Replace the words with expressions. }
$$

## 1-7) Function Notation

Example 3B: Entertainment Application
A carnival charges a $\$ \mathbf{5}$ entrance fee and $\$ 2$ per ride.

What is the value of the function for an input of 12 , and what does it represent?
$C(12)=5+2(12) \quad$ Substitute 12 for $r$ and simplify.
$C(12)=29$
The value of the function for an input of 12 is 29 . This means that it costs $\$ 29$ to enter the carnival and take 12 rides.

## 1-7 Function Notation

## Check It Out! Example 3a

A local photo shop will develop and print the photos from a disposable camera for $\mathbf{\$ 0 . 2 7}$ per print.
Write a function to represent the cost of photo processing.
Let $x$ be the number of photos and let $f$ be the total cost of the photo processing in dollars.
First, identify the independent and dependent variables Cost depends on the number of photos processed Cost $=0.27 \times$ number of photos processed $f(x)=0.27 x \quad$ Replace the words with expressions.

## 1-7 Function Notation

Check It Out! Example 3b
A local photo shop will develop and print the photos from a disposable camera for $\mathbf{\$ 0 . 2 7}$ per print.
What is the value of the function for an input of 24, and what does it represent?

$$
\begin{aligned}
f(24) & =0.27(24) \quad \text { Substitute } 24 \text { of } x \text { and simplify } \\
& =6.48
\end{aligned}
$$

The value of the function for an input of 24 is 6.48 . This means that it costs $\$ 6.48$ to develop 24 photos

