STARTER 1.7

Determine whether the graphs of each pair of equations are parallel, coinciding, perpendicular, or none of these.

- **2.** 2x y = 93x - 6y = 24-4x - 2y = 18Answer: parallel Answer: none of these
- ard form of the equation of the line that passes through the point at (2, -5) and is parallel to the graph of
- Answer: 3x 2y 16 = 03x - 2y + 12 = 0.4. Write the standard form of the equation of the line that passes through the point
- at (-4, 2) and is perpendicular to the graph Answer: x + 2y = 0of 4x - 2y + 5 = 0.

Graphing Functions

• Piece-wise functions •Absolute Value Functions ●Greatest Integer Functions (Step)

Lesson 1.7

Piecewise Functions

What does a piecewise, step and absolute value function look like?

- Vocabulary
 Piecewise function
- Step function
 Greatest integer function

Common "Parent" Functions

- On multi-graph paper, sketch the graph of each of the following making sure to include the following:
 - Equation of graph
 - Label x and y-axes
 - Indicate scale on each axis

$$y=x$$
 $y=x^2$ $y=x^3$ $y=\left| x \right|$
Linear quadratic cubic absolute value

Greatest Integer Function

- Returns the greatest integer value less than or equal to x.

Translation of graphs (shifting graphs.)

- Addition and subtraction changes the <u>position</u> of a graph.
- \bullet Multiplication and division changes the \underline{shape} of a graph.
- Graph the following without your calculator first by guessing the translation.
 - y = |x| + 2
 - y = |x| 1
 - y = |x + 1|
 - y = |x 2|
 - y = |x + 3| 1
 - y = -|x| + 1

Practice

• Write the equation for the following graph:

$$f(x) = \begin{cases} 1 \text{ if } x \le -2\\ 2 + x \text{ if } -2 < x \le 3.\\ 2x \text{ if } x > 3 \end{cases}$$

Guided Practice

Put these functions on your multi-graph paper.

Guided Practice Graph each function.

5.
$$f(x) = \begin{cases} 2x & \text{if } 0 \le x \le 4 \\ 8 & \text{if } 4 < x \le 7 \end{cases}$$

 $7.\,f(x)=-[\![x]\!]$

6.
$$f(x) = \begin{cases} |x| & \text{if } -6 < x < 6 \\ 6 & \text{if } x > 6 \end{cases}$$

8.
$$f(x) = |x - 3|$$