

2.1: Solving Systems of Equations in Two Variables

- A set of equations is called a **system of** equations.
- The *solutions* must satisfy each equation in the system.
- If all equations in a system are linear, the system is a **system of linear equations**, or a **linear system**.

Name of system	Slope (m)	y-int. (b)	# of Solutions	Graph
Consistent, independent	Different	Doesn't matter	One	de-set
Consistent, dependent	Same	Same	Infinitely many	r = p = -3 2a - 2y = -4 Infinitely Many Solution
Inconsistent	Same	Different	none	1.5.2

2.1 Substitution Method					
Example Solve the sy	vstem.				
3 <i>x</i>	+ 2y = 11 (1)				
- <i>x</i>	+ y = 3 (2)				
Solution $y = x + 3$	Solve (2) for <i>y</i> .				
3x + 2(x + 3) = 11	Substitute $y = x + 3$ in (1).				
3x + 2x + 6 = 11	Solve for <i>x</i> .				
5x = 5					
x = 1					
y = 1 + 3	Substitute $x = 1$ in $y = x + 3$.				
y = 4	Solution set: $\{(1, 4)\}$				
	1				

2.1 Elimination Method Example Solve the system. 3x - 4y = 1 (1) 2x + 3y = 12 (2) Solution To eliminate *x*, multiply (1) by -2 and (2) by 3 and add the resulting equations.

 $\begin{array}{ccc}
-6x + 8y = -2 & \textbf{(3)} \\
\underline{6x + 9y = 36} & \textbf{(4)} \\
y = 2 & \end{array}$

14

2.1 Elimination Method

Substitute 2 for y in (1) or (2).

3x - 4(2) = 13x = 9x = 3

The solution set is $\{(3, 2)\}$.

• Check the solution set by substituting 3 in for x and 2 in for y in both of the original equations.

15

2.1 Applications of Systems

• To solve problems using a system

- 1. Determine the unknown quantities
- 2. Let different variables represent those quantities
- 3. Write a system of equations one for each variable

Example In a recent year, the national average spent on two varsity athletes, one female and one male, was \$6050 for Division I-A schools. However, average expenditures for a male athlete exceeded those for a female athlete by \$3900. Determine how much was spent per varsity athlete for each gender.

18

2.1 Applications of Systems Solution Let x = average expenditures per male y = average expenditures per female Average spent on one male and one $= \frac{x+y}{2} = 6050 \implies x+y=12,100$ x + y = 12100 (1) $\frac{x - y = 3900}{2x}$ (2) 2x = 16000 x = 8000Average Expenditure per male: \$8000, and per female: from (2) y = 8000 - 3900 = \$4100.