2.1: Solving Systems of Equations in Two Variables

2.1: Solving Systems of Equations in Two Variables

- A set of equations is called a system of equations.
- The solutions must satisfy each equation in the system.
- If all equations in a system are linear, the system is a system of linear equations, or a linear system.

2.1 Linear System in Two Variables

- Three possible solutions to a linear system in two variables:

1. One solution: coordinates of a point,
2. No solutions: inconsistent case,
3. Infinitely many solutions: dependent case.

4. $y=\frac{2}{3} x-4$
$2 x-3 y=6$
5. $x-4 y=-5$
$y=9 x-25$
6. $5 x-6 y=8$
$3 y=2.5 x-4$
$x+y=-2$
$y=2 x-5$
7. $x-3 y=1$
$2 x+y=-5$
8. $y=x-4$
$3 x+2 y=7$
9. $y=7 x-9$
$y=5 x+7$
$x-3 y=1$
$2 x+y=-5$

-

DO:

12, 14, 16, 22, 28, 32, p. 71

Precalculus

```
1. Use systems of equations in two variables to solve the following applied problems.
    a) There were a total of }28\mathrm{ students in a philosophy class. The number of men was six more
    than the number of women.How many men and women were in the class?
```


2.1 Substitution Method

Example Solve the system.

$$
\begin{array}{r}
3 x+2 y=11 \\
-x+y=3 \tag{2}
\end{array}
$$

Solution $y=x+3 \quad$ Solve (2) for y.
$3 x+2(x+3)=11 \quad$ Substitute $y=x+3$ in (1).
$3 x+2 x+6=11 \quad$ Solve for x.
$5 x=5$
$x=1$
$y=1+3 \quad$ Substitute $x=1$ in $y=x+3$.
$y=4 \quad$ Solution set: $\{(1,4)\}$

2.1 Elimination Method

Example Solve the system.

$$
\begin{align*}
& 3 x-4 y=1 \\
& 2 x+3 y=12 \tag{2}
\end{align*}
$$

Solution To eliminate x, multiply (1) by -2 and (2) by 3 and add the resulting equations.

$$
\begin{align*}
-6 x+8 y & =-2 \tag{3}\\
6 x+9 y & =36 \tag{4}\\
\hline 17 y & =34 \\
y & =2
\end{align*}
$$

-2.1: Substitution Method
isolate one of the variables then substitute it to the other equation, then solve for the value of variable.
Example: Solve the system.

$$
\begin{array}{r}
3 x+2 y=11 \\
-x+y=3 \tag{2}
\end{array}
$$

2.1 Solving a Linear System in Two Variables Graphically

Example Solve the system graphically.

$$
\begin{array}{r}
3 x+2 y=11 \\
-x+y=3
\end{array}
$$

Solution Solve (1) and (2) for y.

$$
\mathrm{Y}_{1}=-1.5 \mathrm{X}+5.5
$$

2.1 Elimination Method

Substitute 2 for y in (1) or (2).

$$
\begin{aligned}
3 x-4(2) & =1 \\
3 x & =9 \\
x & =3
\end{aligned}
$$

The solution set is $\{(3,2)\}$.

- Check the solution set by substituting 3 in for x and 2 in for y in both of the original equations.

2.1 Solving an Inconsistent System

Example Solve the system.

$$
\begin{array}{r}
3 x-2 y=4 \\
-6 x+4 y=7 \tag{2}
\end{array}
$$

Solution Eliminate x by multiplying (1) by 2 and adding the result to (2).

$$
\begin{aligned}
6 x-4 y & =8 \\
-6 x+4 y & =7 \\
\hline 0 & =15 \quad \text { Inconsistent System }
\end{aligned}
$$

Solution set is \varnothing.

2.1 Solving a System with Dependent Equations

Example Solve the system.

$$
\begin{array}{r}
-4 x+y=2 \\
8 x-2 y=-4
\end{array}
$$

Solution Eliminate x by multiplying (1) by 2 and adding the result to (2).

$$
\begin{aligned}
-8 x+2 y & =4 \\
8 x-2 y & =-4 \\
\hline 0 & =0
\end{aligned}
$$

Each equation is a solution of the other. Choose either equation and solve for x.

$$
-4 x+y=2 \Rightarrow x=\frac{y-2}{4}
$$

The solution set is $\left\{\left(\frac{y-2}{4}, y\right)\right\}$. e.g. $\left.y=-2:\left\{\left(\frac{-2-2}{4},-2\right)\right\}=(-1,-2)\right\}$

2.1 Applications of Systems

Solution Let $x=$ average expenditures per male $y=$ average expenditures per female

$$
\begin{align*}
\begin{array}{l}
\text { Average spent on } \\
\text { one male and one }=\frac{x+y}{2} \\
\text { female }
\end{array} & =6050 \Rightarrow x+y=12,100 \\
x+y & =12100 \\
x-y & =3900 \\
& =16000 \tag{2}\\
2 x & \text { (1) } \\
x & =8000
\end{align*}
$$

Average Expenditure per male: $\$ 8000$, and per female: from (2) $y=8000-3900=\$ 4100$.

