

Quick Review

What is the difference between an equation and
<,> an inequality? Which one is shaded? Inequality

- When is the line solid? \leq, \geq
- When is the line dashed (dotted)? <, >
- How do you figure out where to shade? Pick a point to plug in.
Graph this inequality:
$y>x-2$
$\mathrm{m}=1$
$b=-2$

Graphing Systems of Linear Inequalities
Graph each system

Writing Systems of Linear Inequalities Equation
Write the inequalities for each system

2.6: Solving Systems of Linear Inequalities
3. $x \geq 0 ; y \geq 0 ; y \geq x-4 ; 7 x+6 y \leq 54$

2.6: Solving Systems of Linear Inequalities

4. $x \geq 0 ; y+2 \geq 0 ; 5 x+6 y \leq 18$

vertices: $(0,3),(0,-2),(6,-2)$
2.6: Solving Systems of Linear Inequalities
5. $2 x+y \geq-2$

$$
6 x+3 y \leq 6
$$

Practice 2.6, \#7
7. Business Henry Jackson, a recent college graduate, plans to start his own business manufacturing bicycle tires. Henry knows that his start-up costs are going to be $\$ 3000$ and that each tire will cost him at least $\$ 2$ to manufacture. In order to remain competitive, Henry cannot charge more than $\$ 5$ per tire. Draw a graph to show when Henry will make a profit.


```
PRACTICE 2.6
Solving Systems of Linear Inequalities
Solve each system of inequalities by graphing.
M,
    vertices: (0,0), (0, 9), (6, 2), (4, 0)
    vertices: (0, 3), (0, -2), (6, -2)
\begin{tabular}{l} 
1. \(-4 x+7 y \geq-21 ; 3 x+7 y \leq 28\) \\
\hline
\end{tabular}
```


EXAMPLE A Triangular Solution Region	
Graph the system of linear inequalities.	$\begin{array}{ll} y<2 & \text { Inequality 1 } \\ x \geq-1 & \text { Inequality 2 } \\ y>x-2 & \text { Inequality 3 } \end{array}$
The point $(0,3)$ is not in the graph of the system. Notice $(0,3)$ is not a solution of inequality 1 . This point is not a solution of the system.	
When graphing a system of inequalities, it is helpful to find each corner point (or vertex). For instance, this graph has three corner points: $(-1,2),(-1,-3)$, and $(4,2)$.	

EXAMPLE Solution Region Between Parallel Lines		
Write a system of inequalities that defines the shaded region shown.		
-Lution		
SOLUTION		
The graph of one inequality is the half-plane below the line $y=3$.		
The graph of the other inequality is the half-plane above the line $\boldsymbol{y}=1$.		
The shaded region of the graph is the horizontal band that lies between the two horizontal lines, $y=3$ and $y=1$, but not on the lines.		
The system of linear inequalities at the right defines the shaded region.	$\begin{aligned} & y<3 \\ & y>1 \end{aligned}$	Inequality 1 Inequality 2

EXAMPLEA Quadrilateral Solution Region Graph the system of linear inequalities. Label each vertex of the solution region. Describe the shape of the region. The graph of the first inequality is of the y-axis.The graph of the second inequality is the half-plane on and above of the x-axis.

| EXAMPLE |
| :--- | :--- |
| A Quadrilateral Solution Region |
| Graph the system of linear inequalities. Label each vertex of the solution |
| region. Describe the shape of the region. |

Modeling A Real-Life Problem

You are ordering lighting for a theater so the spotlights can follow the performers. The lighting technician needs at least 3 medium-throw spotlights and at least 1 long-throw spotlight. A medium-throw spotlight costs $\$ 1000$ and a longthrow spotlight costs $\$ 3500$. The minimum order for free delivery is $\$ 10,000$.

Write and graph a system of linear inequalities that shows how many medium throw spotlights and long-throw spotlights should be ordered to get the free delivery.
Verbal Model Number of medium-throws ≥ 3
Number of long-throws ≥ 1
$\underset{\text { medium- }}{\text { Number of }} \begin{gathered}\text { Price of a } \\ \text { medium- }\end{gathered}+\underset{\text { of long- }}{\text { Number }} \begin{gathered}\text { Price of a } \\ \text { long- }\end{gathered}$
$\underset{\text { throws }}{\text { medium- }} \begin{gathered}\text { medium- } \\ \text { throw }\end{gathered}+\begin{gathered}\text { of long- } \\ \text { throws }\end{gathered} \underset{\text { lhrow }}{\text { long- }} \geq 10,000$

GOAL 2 Modeling A Real-Life Problem

You are ordering lighting for a theater so the spotlights can follow the
performers. The lighting technician needs at least 3 medium-throw spotlights and at least 1 long-throw spotlight. A medium-throw spotlight costs $\$ 1000$ and a longthrow spotlight costs $\$ 3500$. The minimum order for free delivery is $\$ 10,000$.

Write and graph a system of linear inequalities that shows how many medium throw spotlights and long-throw spotlights should be ordered to get the free delivery.

GOAL 2 Modeling A Real-Life Problem

You are ordering lighting for a theater so the spotlights can follow the performers. The lighting technician needs at least 3 medium-throw spotlights and at least 1 long-throw spotlight. A medium-throw spotlight costs $\$ 1000$ and a longthrow spotlight costs $\$ 3500$. The minimum order for free delivery is $\$ 10,000$.

Will an order of 4 medium-throw spotlights and 1 long-throw spotlight be delivered free?

The point $(4,1)$ is outside the solution region, so an order of 4 medium-throw spotlights and 1 long-throw spotlight would not be delivered free.

