Translations

- When a constant is <u>added</u> or <u>subtracted</u> from a parent function, the result would be a translation horizontally or vertically.
- Let g(x) be the indicated transformation of f(x) at (h, k).

- Ex. 1) Let g(x) be the indicated transformation of f(x). Write the rule for g(x).
 - a) f(x) = 2x + 3; vertical translation 4 units up.

Rule:

$$x \stackrel{.}{\vdash} same$$

 $y \stackrel{.}{\vdash} y + 4$

$$g(x) = f(x) + 4$$

$$g(x) = (2x+3)+4$$

$$g(x) = 2x + 7$$

Reflections

- Flips a figure over a line called the axis (or line) of symmetry.
- Let g(x) be the indicated transformation of f(x).

	Reflections over the x-axis	Reflections over the y-axis
Rule	xÈ same	x È -x
	y È - y	y È same
As a point	(x, -y)	(-x,y)

$$g(x) = -f(x)$$

$$g(x) = f(-x)$$

reflection over the x-axis

reflection over the y-axis

- Ex. 2) Let g(x) be the indicated transformation of f(x). Write the rule for g(x).
 - a) linear function defined in the table; reflection across y -axis.
 - Find the slope:

$$m = \frac{2-0}{0-(-1)} = 2$$

- x f(x)
 -1 0
 0 2
 1 4
- ullet Find the equation in slope-intercept form. Using (0, 2), $\,b$ = 2

$$f(x) = 2x + 2$$

• Write the rule for g(x). Reflecting f(x) across the y -axis replaces each x with -x.

$$g(x) = 2(-x) + 2$$

$$g(x) = -2x + 2$$

Stretches and Compressions

- A transformation that produces an image that is the same shape as the original in which all distances on the coordinate plane are stretch or compressed/shrinked by multiplying either all x-coordinates or all y-coordinates by a factor.
- Let g(x) be the indicated transformation of f(x).

- Ex. 3) Let g(x) be a horizontal compression of f(x) = 2x 1 by a factor of $\frac{1}{3}$. Write the rule for g(x), and graph the function .
 - Horizontally compressing f(x) by a factor of $\frac{1}{3}$ replaces each x with $\frac{1}{b}(x)$ where $b = \frac{1}{3}$.

Summary of Transformations

• Let g(x) be the indicated transformation of f(x) with a and b as factors and translation to (h,k).

b < 0 reflection over the y-axis |b| > 1 horizontal compression by a factor of 1/b 0 < |b| < 1 horizontal stretch by a factor of 1/b Watch out for the SIGN! a < 0 reflection over the x-axis |a| > 1 vertical stretch by a factor of a b > 0 right b units b < 0 left b units b < 0 left b units

- Ex. 4) Let g(x) be a vertical shift of f(x) = x, down 2 units followed by a vertical stretch by a factor of 5. Write the rule for g(x).
 - Translating f(x) = x down 2 units subtracts 2 from the function. h(x) = f(x) 2

h(x) = x - 2

• Perform the vertical stretch by a factor of 5 $g(x) = 5 \cdot h(x)$

$$g(x) = 5(x-2)$$

g(x) = 5x - 10

RNBriones Concord High