Compound Statement

• made up of more than one equation or inequality.

Disjunction

- a compound statement that uses the word **or**. For set builder and interval notation, we use the symbol, \hat{a} .
- A disjunction is true if and only if at least one of its parts is true.

Conjunction

- a compound statement that uses the word **and**. For set builder and interval notation, we use the symbol, \acute{a}_{\bullet}
- A conjunction is true if and only if all of its parts are true.
- Conjunctions can be written as a single statement as shown.

 $x \ge -3$ AND x < 2 can be written as $-3 \le x < 2$

-8 -6 -4 -2	0	2	4	6	8			
Disjunction: $x \le -3$ OR $x > 2$								
Set builder notation	: {)	$\mathbf{r} \mid \mathbf{x}$	≤-	311	<i>x</i> >	2}		

Interval notation: $(-\infty, -3] \cup (2, \infty)$

-8 -6 -4 -2 0 2 4 6

Ex. 1) Solve each compound inequality. Write the solution set in inequality, set builder and interval notation. Then graph the solution set. Use colored pencils.

a) $x + 3 \le 2 \text{ OR } 3x > 9$

Inequality: Set builder notation: Interval notation:

b) -2x < 8 **AND** $x - 3 \le 2$

d) 2x - 5 > 3 **OR** 3x - 2 < 13

Inequality: Set builder notation: Interval notation:

f) $3x + 4 \le 10$ AND -2x - 8 > 2

Inequality: Set builder notation: Interval notation:

Inequality: Set builder notation: Interval notation:

Inequality: Set builder notation:

e) 3x + 3 < 6 AND 2x - 3 > 5

Inequality: Set builder notation: Interval notation:

c) x + 3 > 7 OR $3x \ge 18$

Interval notation:

Absolute Value

• Recall that the **absolute value** of a number x, written as |x|, is the distance from x to zero on the number line. Because absolute value represents distance without regard to direction, the absolute value of any real number is **nonnegative**.

Absolute Value		
WORDS	NUMBERS	ALGEBRA
The absolute value of a real number x , $ x $, is equal to its distance from zero on a number line.	5 = 5 -5 = 5	$ x = \begin{cases} x \text{ if } x \ge 0\\ -x \text{ if } x < 0 \end{cases}$

Ex. 2) Find the solution.

a)
$$|x| = 3$$

b) |x| < 3

c) |x| > 3

The solutions of |x| = 3 are the two points that are 3 units from zero. The solution is a <u>disjunction</u>: x = -3 OR x = 3. The solutions of |x| < 3 are the points that are less than 3 units from zero. The solution is a **conjunction**: -3 < x < 3.

The solutions of |x| > 3 are the points that are more than 3 units from zero. The solution is a **disjunction**: x < -3 OR x > 3.

Absolute-Value Equations and InequalitiesFor all real numbers x and all positive real numbers a:
$$|x| = a$$
 $|x| < a$ $x = -a \text{ OR } x = a$ $|x| < a$ $x = -a \text{ OR } x = a$ $x > -a \text{ AND } x < a$ $-a < x < a$ $-a < x < a$

Ex. 3) Solve each equation.

a) |2x-4|=12

b) 3|4w-1|-5=10

c) 2|3x+7| = -5

Extraneous Solution

• A solution of an equation derived from an original equation that is not a solution of the original equation.

Ex. 4) Solve each equation. Check for extraneous solutions.

a) |2x+5| = 3x+4b) |2x+3| = 3x+2c) |3x+5| = 5x+2

Solving an Absolute-Value Inequality

- 1) Isolate the absolute-value inequality, if necessary.
- 2) Rewrite the absolute-value expression as a compound inequality.
- 3) Solve each part of the compound inequality for the value of the variable.

Ex. 5) Solve each inequality. Then graph the solution set.

a)
$$|2x+1| > 5$$
 b) $|4x|+16 > 8$ c) $-2|x+5| > 10$ d) $\frac{|3x-9|}{2} \le 12$