
$\xrightarrow{ }$ With an SRS of size n , from a $\mathrm{N}\left(\mathrm{p}_{0}, \mathrm{SE}\right), \mathrm{p}=$ unknown. We want to test the hypothesis that p has a specified value p_{0}. The null hypothesis is

$$
\mathbf{H}_{0}: \mathbf{p}=\mathbf{p}_{0}
$$

The test is based on the sample proportion, \hat{p}.
Normal calculations require standardized variables

$$
z=\frac{\hat{p}-p_{0}}{\sqrt{\frac{p_{0} q_{0}}{n}}}
$$

It's important to note that we use p_{0}, not \hat{p} to calculate SE_{p} This one-proportion z statistic has the standard normal distribution when \mathbf{H}_{0} is true. If the alternative is one-sided on the high side: $\mathrm{Ha}: \mathrm{p}>\mathrm{p}_{0}$ then the P -value is the probability that a standard normal variable \mathbf{Z} takes a value at least as large as the observed \mathbf{z}. That is, $\mathbf{P}=\mathbf{P}(\mathbf{Z} \geq \mathbf{z})$

Tests from CI's
 $>$ A two-sided test at significance level α can be carried out directly from a confidence interval with confidence level $C=1-\alpha$.
 CI and Two-Sided Tests ($\mathbf{p} \neq \mathrm{p}_{0}$)
 > A level α two-sided significance test rejects a hypothesis $\mathrm{H}_{0}: \mathrm{p}=\mathrm{p}_{0}$ exactly when the value p_{0} falls outside a level 1- α confidence interval for

 p.Tests with Fixed Significance Level, α
> A level of significance α says how much evidence we require. In terms of P-value, the outcome of a test is significant at level α if P value $\leq \alpha$.

$$
\alpha=1-C
$$

* Where C is the confidence
> When Making a decision, use the following: \star We reject H_{0} if p-value $\leq \alpha$ \star We fail to reject H_{0} if p -value $>\boldsymbol{\alpha}$

$$
\begin{aligned}
& \text { Inference for a Population Proportion } \\
& \text { Recall: Sample proportion, } \\
& \hat{p}=\text { the sample proportion } \\
& \hat{p}=\frac{\text { count of successes in the sample }}{\text { count of observations in the sample }} \\
& p=\text { the population proportion (the parameter) } \\
& \mathrm{SE}_{p}=\text { the standard error of the sampling distributi on } \\
& \mathrm{CI}: \mathrm{SE}_{p}=\sqrt{\frac{\hat{p} \hat{q}}{n}} \quad \text { Significan ce Test : } S E_{p}=\sqrt{\frac{p_{0} q_{0}}{n}}
\end{aligned}
$$

Notice that we use a different p for $S E$ depending on the type of inference being used!!!

Assumptions and Conditions for Inference about a Proportion

> Independence Assumption

$*$ Randomization condition
\Rightarrow Were the data sampled at random or generated from a properly randomized experiment? Proper randomization is key - we really like to see an SRS if possible.
$\div 10 \%$ condition
\Rightarrow Are the samples drawn without replacement? If the sample exceeds 10%, chances are that some data may be in multiple samples.

* Plausible independence condition
\Rightarrow Is there any reason to believe that the data values somehow affect each other? (Actually, this condition should always be checked even though we haven't specifically said this in the past.)

Remember we determine the appropriate alternative hypothesis in context of the problem. -

Assumptions and Conditions for Inference about a Proportion

> Large Enough Sample Assumption (or the Normality Assumption) * Success/Failure condition
\Rightarrow In order for us to use the CLT to assume the normality of the sampling distribution, we need to have a large enough sample. To check to see if we have a large enough sample, we use the success/failure condition.
\Rightarrow We must expect to have at least 10 "successes" and at least 10 "failures." Recall that by tradition we arbitrarily label one alternative (usually the outcome being counted) as a
"success" even if it's something bad (like a sick sea fan). The other alternative is the "failure."
\Rightarrow This can be calculated using the formula:

+ For confidence intervals, we $\boldsymbol{\omega}$
+ For hypothesis tests, we use: $n p \geq 10$ or $n q \geq 10$
* We always assume the Null-p to be true.

Formulas for Inference of Proportions

> When the conditions are met, we either do a oneproportion confidence interval or a one-proportion z-test (notice that this is a z-test assuming that the sampling distribution is Normal).
> Confidence Interval $-z^{*}$ is the upper $(1-C) / 2$

$$
\hat{p} \pm z^{*} \sqrt{\frac{\hat{L} \cdot \hat{X}}{n}}
$$

> For a hypothesis test where H_{0} : $\mathrm{p}=\mathrm{p}_{0}$, the z statistic

$$
z=\frac{\hat{p}-p_{0}}{\sqrt{\frac{p_{0} q_{0}}{n}}}
$$

Example

Step 2: Verify the Assumptions by checking the conditions Independence Assumption
-Randomization condition: Although we have all the data for 2002, we are interested in more than just that year, so it is not a randomized set of data. Although not randomized, 2002 can be a representative sample of recent and future games played.
-10\% condition: We can reasonably assume that we observed fewer than 10% of all recent and future games played
-Plausible independence condition: Generally, the outcome of one game has no effect on the outcome of another game. But this may not always be true. For example, if a key player is injured, the probability that a team wins may be reduced. However, independence is roughly true.

Example
Step 3: If conditions are met, $\underline{\text { Name the }}$ the inference procedure, find the Test statistic, and Obtain the p-value in carrying out the inference:

$$
\begin{aligned}
& \text { Test Statistic: } z=\frac{\hat{p}-p_{0}}{S E(\hat{p})}=\frac{0.542-0.50}{0.01015} \approx 4.14 \\
& \text { p-value: } \\
& P(z>4.14) \approx .000017
\end{aligned}
$$

Try to use the calculator to get the same data
GO to

- STAT
- TESTS
- 5: 1-PropZTest ... enter po, x, n, and tail ($>,<$, or \neq

Example

Step 3: If conditions are met, \underline{N} ame the inference procedure, find the Test statistic, and Obtain the p-value in carrying out the inference:

$$
\begin{aligned}
& \text { Test Statistic: } z-\frac{\hat{p}-p_{0}}{S E(\hat{p})}=\frac{0.542-0.50}{0.01015} \approx 4.14 \\
& \text { p-value: } \quad P(z>4.14) \approx .000017
\end{aligned}
$$

$$
\begin{gathered}
n p_{0} \geq 10 \text { and } n q_{0} \geq 10 \\
n p_{0}=2425(.5)=1212.5 \geq 10 \\
n q_{0}=2425(.5)=1212.5 \geq 10
\end{gathered}
$$

Example

Step 3: If conditions are met, Name the inference procedure, find the Test statistic, and Obtain the p-value in carrying out the inference:

Since the conditions are satisfied, it is appropriate to model the sampling distribution with the Normal distribution with mean p_{0} and SE (p-hat).

- We will use a one-proportion z-test (this is the name of the inference)

$$
\begin{aligned}
& S E_{v}=\sqrt{\frac{p_{0} q_{0}}{n}}=\sqrt{\frac{(.5)(.5)}{2425}} \approx .01015 \\
& \hat{p}=0.542 \text { (this was given in the beginning) }
\end{aligned}
$$

Example

Step 3: If conditions are met, \underline{N} ame the inference procedure, find the Test statistic, and Obtain the p-value in carrying out the inference:

$$
\begin{aligned}
& \text { Test Statistic: } z-\frac{\hat{p}-p_{0}}{S E(\hat{p})}=\frac{0.542-0.50}{0.01015} \approx 4.14 \\
& \text { p-value: } \quad P(z>4.14) \approx .000017
\end{aligned}
$$

Right Tail: normalcdf($\mathrm{z}, 99$)
Try to use the calculator to get the same data using tests
GO to

- STAT
- TESTS
- 5: 1-PropZTest \ldots enter p_{0}, x, n, and tail ($>,<$, or \neq)

[^0]
Sample size for desired Margin of Error.

\square To determine the sample size n that will yield a level C confidence interval for a population proportion p with specified margin of error m, set the following expression for the margin of error to be less than or equal to m, and solve for n :

$$
z^{*} \sqrt{\frac{p^{*} q^{*}}{n}} \leq m
$$

where p^{*} is a guessed value for the sample proportion. The margin of error will be less than or equal to m if you take the guess p^{*} to be 0.5 .

[^0]: $-$
 Example
 conclusion in context of the problem using p-value.

 The very small p-value says that if the true proportion of home team wins were 0.50 , then the observed value of 0.542 or larger would occur in less than 1 out of 10,000 seasons. We reject the null hypothesis (this is our decision). There is very strong evidence, p -value $=0.000017$, that the true proportion of home team wins is more than 50% and there is a home field advantage (conclusion).

