3.1: Symmetry and Coordinate Graphs

Essential Questions:

- How do we determine symmetry using algebra?
- How do we classify functions as even or odd?

Symmetry with Respect to the:	Definition and Test	Example	
x-axis	$(a, -b) \in S$ if and only if $(a, b) \in S$.	<i>v</i> t <i>x</i> =	
Dula	Example: $(2, \sqrt{6})$ and $(2, -\sqrt{6})$ are on the graph.	(2.	
$(x, y) \Longrightarrow (x, -y)$	Test: Substituting (a, b) and f'' (a, -b) into the equation produces equivalent equations.	0 (2,	
y-axis	$(-\sigma, b) \in S$ if and only if $(\sigma, b) \in S$.	ytr	
Rule:	Example: (2, 8) and (-2, 8) are on the graph.	(=2.8)	
$(x, y) \longrightarrow (-x, y)$	Test: Substituting (a, b) and (-a, b) into the equation		

Symmetry with respect to:	What do we do?	Example
x-axis	keep <i>x</i> the same but negate <i>y</i>	\longleftrightarrow
y-axis	Keep <i>y</i> the same but negate <i>y</i>	\longleftrightarrow
y = x	Interchange <i>x</i> and <i>y</i>	\longleftrightarrow
y = -x	Interchange AND negate x and y	\longleftrightarrow
origin	Negate x and negate y	\longleftrightarrow

with respect to:	x (x, -y)	y (-x, y)	y = x (y, x)	<i>y</i> = - <i>x</i> (- <i>y</i> , - <i>x</i>)	Origin (-x, -y)
1) $y = 3x^2 + 4$					
2) $5x^2 - 6y^2 = 8$					
3) $x^3 + y^2 = 4$					
4) $xy = -2$					
5) $y^2 = \frac{4x^2}{9} - 4$					

	Even and Odd Functions
A function the number	f is even if, for every number x in its domain. -x is also in the domain and $f(-x) = f(x)$
For an ev the graph	ren function, for every point (x , y) on a, the point (- x , y) is also on the graph.

Exercises			
Determine whether the graph of each function is symmetric with respect to th origin.			
$6, f(x) = x^6 + 9x$	7 . $f(x) = \frac{1}{5x} - x^{19}$		
Determine whether the gra x-axis, y-axis, the line $y = x$	aph of each equation is symmetric with respect to the , the line $y = -x$, or none of these.		
8. $6x^2 = y - 1$	9. $x^3 + y^3 = 4$		
Determine whether the grasymmetric with respect to both, or neither. Use the is symmetry to graph the rel	aph of each equation is the x-axis, the y-axis, formation about ation.		

Determine whether the graph of each function is symmetric with respect to the origin.		
14 . $f(x) = 3x$	15 . $f(x) = x^3 - 1$	16. $f(x) = 5x^2 + 6x + 9$
17. $f(x) = \frac{1}{4x^2}$	18. $f(x) = -7x^5 + 8x$	19. $f(x) = \frac{1}{x} = x^{100}$
20. Is the graph of g	$(x) = \frac{1}{2}$ symmetric with resp	ect to the origin? Explain how
you determined Determine whether xaxis, yaxis, the lin	your answer. the graph of each equation is s e v = x the line $v = -x$ or poor	ymmetric with respect to the
you determined Determine whether x-axis, y-axis, the line 21. xy = -5	your answer. the graph of each equation is s e y = x, the line $y = -x$, or non- $22, x + y^2 = 1$	ymmetric with respect to the e of these. 23. $y = -8x$
you determined Determine whether x-axis, y-axis, the line 21. $xy = -5$ 24. $y = \frac{1}{x^2}$	your answer. the graph of each equation is s e y = x, the line y = $-x$, or non- 22, $x + y^2 = 1$ 25, $x^2 + y^2 = 4$	ymmetric with respect to the e of these. 23. $y = -8x$ 26. $y^2 = \frac{4x^2}{9} - 4$

Exercises			
Determine whether the graph of each equation is symmetric with respect to the x-axis, the y-axis, both, or neither. Use the information about symmetry to graph the relation.			
31 . $y^2 = x^2$	32. $ x = -3y$	33 . $y^2 + 3x = 0$	
34 . $ y = 2x^2$	35. $x = \pm \sqrt{12 - 8y^2}$	36 . $ y = xy$	
the graph.			

Determine whether the much of each function is more this with assess to the				
origin.				
14. $f(x) = 3x$	15. $f(x) = x^3 - 1$	$16. f(x) = 5x^2 + 6x + 9$		
17. $f(x) = \frac{1}{4x^2}$	18 . $f(x) = -7x^5 + 8x$	19. $f(x) = \frac{1}{x} - x^{100}$		
20. Is the graph of g you determined	$f(x) = \frac{x^2 - 1}{x}$ symmetric with resp your answer.	ect to the origin? Explain how		
Determine whether x-axis, y-axis, the line	the graph of each equation is set $y = x$, the line $y = -x$, or none	ymmetric with respect to the of these.		
19	22. $x + y^2 = 1$	23. $y = -8x$		
21 . $xy = -5$				
21. $xy = -5$ 24. $y = \frac{1}{x^2}$	25. $x^2 + y^2 = 4$	26. $y^2 = \frac{4x^2}{9} - 4$		
21. $xy = -5$ 24. $y = \frac{1}{x^2}$ 27. Which line(s) are	25. $x^2 + y^2 = 4$ e lines of symmetry for the graph	26. $y^2 = \frac{4x^4}{9} - 4$ of $x^2 = \frac{1}{x^2}$?		