

Point Symmetry

- The origin is a common point of symmetry.

Line Symmetry

Two distinct pcints P and P are symmetric with respect to a line ℓ if and only if ℓ is the perpendicular bisector of $\overline{P P}$. A point P is symmetric to itself with respect to line ℓ if and only if P is an ℓ.

- Each graph below has line symmetry. The equation of each line of symmetry is given. Graphs that have line symmetry can be folded along the line of symmetry so that the two halves match exactly.

Point Symmetry

Two distinct points P and P^{\prime} are symmetric with respect to point M if and only if M is the mipoint of $\overline{P P}$ '. Point M is symmetric wth respect to itsef.

- Each point \boldsymbol{P} in the set must have an image point \boldsymbol{P}^{\prime} that is also in the set. A figure that is symmetric with respect to a given point can be rotated 180° about that point and appear unchanged.

Line Symmetry

Symmetry

\boldsymbol{x}-axis

What we do: keep x the same but negate y

$$
x=y^{2}-3
$$

$\Leftrightarrow x=(-y)^{2}-3$
$x=y^{2}-3$

Symmetry

y-axis

What we do: keep y the same but negate x

$$
y=-x^{2}+3
$$

$$
\Longrightarrow y=-(-x)^{2}+3
$$

$$
y=-x^{2}+3
$$

Symmetry

$y=-x$

What we do: interchange AND negate x and y

Line Symmetry

Symmerry with Respect to the:	Definition and Test	Example
$x \text {-axis }$ Rule: $(x, y) \Longrightarrow(x,-y)$	(a. -b) $\in S$ if and only if $\|a, b\| \in S$. Examplo: $(2, \sqrt{5})$ and $(2,-\sqrt{6})$ are on the graph. Test. Substilling ($0, b$) and $\|a,-b\|$ into the equation prodices equivolent equatons.	
y-axis Rule: $(x, y) \rightrightarrows(-x, y)$	$\|-a, b\| \in S$ if and ony if $\|a, b\| \in S$. Example: $(2,8)$ and $(-2,8)$ are on the graph. Test: Substitiving (a, b) and $(-a, b)$ irto the equation produces equivalent equations.	

Symmetry

$y=x$
What we do: interchange (swap) x and y

$y=\frac{6}{x}$

Symmetry

origin

What we do: negate x AND negate y

$\xrightarrow{\square}(-y)=(-x)^{3}-4(-x)$
$-y=-x^{3}+4 x$
$y=x^{3}-4 x$

Common types of symmetry are:

■ with respect to the \boldsymbol{x}-axis

- with respect to the \boldsymbol{y}-axis
- with respect to the origin
- with respect to the line $\boldsymbol{y}=\boldsymbol{x}$
- with respect to the line $\boldsymbol{y}=\boldsymbol{- x}$

Test the symmetry						
with respect to: \boldsymbol{x} $(\boldsymbol{x},-\boldsymbol{y})$ \boldsymbol{y} $(-\boldsymbol{x}, \boldsymbol{y})$ $\boldsymbol{y}=\boldsymbol{x}$ $(\boldsymbol{y}, \boldsymbol{x})$ $\boldsymbol{y = - \boldsymbol { x }}$ $(-\boldsymbol{y},-\boldsymbol{x})$ 1) $y=3 x^{2}+4$ $(-\boldsymbol{x},-\boldsymbol{y})$						
2) $5 x^{2}-6 y^{2}=8$						
3) $x^{3}+y^{2}=4$						
4) $x y=-2$						
5) $y^{2}=\frac{4 x^{2}}{9}-4$						

Example 1

Determine the types of symmetry for the graph of $x y=-2$
■ x-axis

- No
- y-axis
- No
■ origin
- Yes
■ $y=x$
- Yes
- $y=-x$
■ Yes

Example 2

Determine the types of symmetry for the graph
of $y^{2}=\frac{4 x^{2}}{9}-4$

- x-axis

■ yes

- y-axis
- yes
- origin
- yes
- $y=x$
- no
- $y=-x$

■ no

Even and Odd Functions
A function f is even if, for every number x in its domain, the number $-x$ is also in the domain and $\qquad f(-x)=f(x)$ For an even function, for every point $(\boldsymbol{x}, \boldsymbol{y})$ on the graph, the point $(-\boldsymbol{x}, \boldsymbol{y})$ is also on the graph.

Classifying Functions as Even or Odd

- EVEN functions are symmetric with respect to the \mathbf{y}-axis
- ODD functions are symmetric with respect to the origin

Even and Odd Functions

EXAMPLE

Identifying Even and Odd Functions
Use a graphing utility to conjecture whether each of the following functions is even. odd, or neither. Verify the conjecture algebraically. Then state whether the graph is symmetric with respect to the y-axis or with respect to the origin.

1) $f(x)=-3 x^{4}-x^{2}+2$
even; \boldsymbol{y}-axis
2) $g(x)=5 x^{3}-1$
neither
3) $h(x)=2 x^{3}-x$
odd; origin

Determine whether each graph is symmetric with respect to the origin.
3.

4.

5. Complete the graph so that it is the graph of an odd function.

Exercises

Determine whether the graph of each function is symmetric with respect to the origin.
6. $f(x)=x^{6}-9 x$
7. $f(x)=\frac{1}{5 x}-x^{19}$

Determine whether the graph of each equation is symmetric with respect to the x-axis, y axis, the line $y=x$, the line $y=-x$, or none of these.
8. $6 x^{2}=y-1$
9. $x^{3}+y^{3}=4$

Determine whether the graph of each equation is
symmetric with respect to the x-axis, the y-axis,
symmetric with respect to the x-axis, the y -
symmetry to graph the relation.
11. $y=\sqrt{2-x^{2}}$
12. $|y|=x^{3}$

CW 3.1

DO: evens 14-26, 32-36, p. 134

Exercises		
Determine whether the graph of each function is symmetric with respect to the origin.		
14. $f(x)=3 x$	15. $f(x)=x^{3}-1$	16. $f(x)=5 x^{2}+6 x+9$
17. $f(x)-\frac{1}{4 x^{7}}$	18. $f(x)=-7 x^{5}+8 x$	19. $f(x)-\frac{1}{x}-x^{100}$
20. Is the graph of $g(x)=\frac{x^{2}-1}{x}$ symmetric with respect to the origin? Explain how you determined your answer.		
Determine whether the graph of each equation is symmetric with respect to the x-axis, y axis, the line $y=x$, the line $y=-x$, of none of these.		
21. $x y=-5$	22. $x+y^{2}=1$	23. $y=-8 x$
24. $y=\frac{1}{x^{2}}$	25. $x^{2}+y^{2}=4$	26. $y^{2}=\frac{4 x^{2}}{9}-4$
27. Which line(s) are lines of symmetry for the graph of $x^{2}=\frac{1}{y^{2}}$?		

CW 3.1 DO: evens 14-26, 32-36, p. 134

Exercises		
Determine whether the graph of each function is symmetric with respect to the origin.		
14. $f(x)=3 x$	15. $f(x)=x^{3}-1$	16. $f(x)=5 x^{2}+6 x+9$
17. $f(x)=\frac{1}{4 x^{3}}$	18. $f(x)=-7 x^{5}+8 x$	19. $f(x)=\frac{1}{x}-x^{100}$
20. Is the graph of $g(x)=\frac{x^{2}-1}{x}$ symmetric with respect to the origin? Explain how you determined your answer.		
Determine whether the graph of each equation is symmetric with respect to the x-axis, y axis, the line $y=x$, the line $y=-x$, or none of these.		
21. $x y=-5$	22. $x+y^{2}=1$	23. $y=-8 x$
24. $y=\frac{1}{x^{2}}$	25. $x^{2}+y^{2}=4$	26. $y^{2}=\frac{4 x^{2}}{9}-4$
27. Which line(s) are lines of symmetry for the graph of $x^{2}=\frac{1}{y^{2}}$?		

CW 3.1 DO: evens 14-26, 32-36, p. 134

