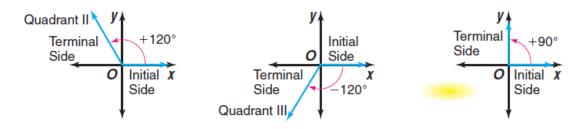
Objectives:


- Convert decimal degree measures to degrees, minutes, and seconds and vice versa.
- Find the number of degrees in a given number of rotations.
- Identify angles that are co-terminal with a given angle.

vertex – common endpoint of two raysTerinitial side – the fixed, starting ray of an angleterminal side – the movable, ending side of an angle θ – Greek symbol <u>theta</u> used to stand for angle measureVertex

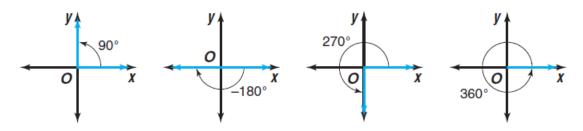
Terminal Side 0 Vertex Initial Side

degree, ^o– most common unit of measure. The degree is subdivided into 60 equal parts known as **minutes** (1'), and the minute is subdivided into 60 equal parts known as **seconds** (1").

standard position – when an angle's *vertex is at the origin* and its *initial side is on the positive* <u>*x-axis*</u>

- If the rotation is in a **counterclockwise** direction, the angle formed is a *positive angle*.
- If the rotation is <u>clockwise</u>, it is a <u>negative angle</u>.

Example 1:


- a) Change 15.735° to degrees, minutes, and seconds.
- b) Write north latitude 39° 5' 34' as a decimal rounded to the *<u>nearest</u> <u>thousandth</u>.*

PRACTICE 1:

- Change each measure to degrees, minutes, and seconds.
 a) 34.95°
 b) -72.775°
- 2) Write each measure as a decimal to the *nearest thousandth*.
 a) -128° 30' 45"
 b) 29° 6' 6"

► DMS on the [ANGLE] menu allows you to convert decimal degree values to degrees, minutes, and seconds. **Quadrantal Angle**—an angle in standard position whose terminal side coincides with one of the axes. A <u>full rotation</u> around a circle is **360**°. Measures of more than 360° represent multiple rotations.

Example 2: Find the angle measure represented by each rotation.

b) 3.3 rotations counterclockwise

PRACTICE 2: Find the angle measure represented by each rotation.

a) 2 rotations clockwise.

a) 5.5 rotations clockwise.

b) 4.5 rotations counterclockwise

Coterminal	If ${f heta}$ is the degree measure of an angle, then all angles measuring
Angles	θ + 360k° , where k is an integer, are coterminal with θ .

Example **3A:** Identify all angles coterminal with 75°.

Any angle coterminal with an angle of 75° can be written as $\underline{75^\circ + 360k^\circ}$, where *k* is the number of rotations around the circle.

- The value of *k* is a **positive** integer if the rotations are *counterclockwise* and
- a <u>negative integer</u> if the rotations are *clockwise*.

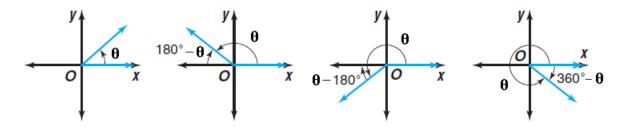
Example **3B:** Identify all angles that are coterminal with each angle. Then find one positive angle and one negative angle that are coterminal with the angle.

a) 45° b) 225°

Example **4:** If each angle is in standard position, determine a coterminal angle that is between 0° and 360° . State the quadrant in which the terminal side lies.

a) 775°

b) -1297°


PRACTICE 3: Identify all angles that are coterminal with each angle. Then find one positive angle and one negative angle that are coterminal with the angle.

a) 22° b) -170°

PRACTICE 4: If each angle is in standard position, determine a coterminal angle that is between 0° and 360°. State the quadrant in which the terminal side lies.
a) 453°
b) -798°

Reference Angle

- (formal definition) an acute angle (measures <u>less than</u> 90°) formed between the terminal side of an angle and the *x*-axis.
- (informal definition) how close an angle is to the *x*-axis.

For any angle θ , $0^{\circ} < \theta < 360^{\circ}$, its reference angle θ ' is defined by
a) θ , when the terminal side is in Quadrant I,
b) 180 ° — θ , when the terminal side is in Quadrant II,
c) θ — 180° , when the terminal side is in Quadrant III, and
d) 360 ° — θ , when the terminal side is in Quadrant IV.

Example 5: Find the measure of the reference angle for each angle. Convert to a standard angle first $(0^{\circ} < \theta < 360^{\circ})$, if necessary, then apply the reference angle rules. a) 120° b) -135° c) 612° d) -195°

PRACTICE 5: Find the measure of the reference angle for each angle. Convert to a standard angle first $(0^{\circ} < \theta < 360^{\circ})$, if necessary, then apply the reference angle rules. a) 227° b) -210° c) 563° d) -1045°