## Objectives:

- Convert decimal degree measures to degrees, minutes, and seconds and vice versa.
- Find the number of degrees in a given number of rotations.
- Identify angles that are co-terminal with a given angle.
vertex - common endpoint of two rays
initial side - the fixed, starting ray of an angle
terminal side - the movable, ending side of an angle
$\boldsymbol{\theta}$ - Greek symbol theta used to stand for angle measure

degree, ${ }^{\mathbf{0}}$ - most common unit of measure. The degree is subdivided into 60 equal parts known as minutes ( $1^{\prime}$ ), and the minute is subdivided into 60 equal parts known as seconds (1").
standard position - when an angle's vertex is at the origin and its initial side is on the positive $\underline{x}$-axis

- If the rotation is in a counterclockwise direction, the angle formed is a positive angle.
- If the rotation is clockwise, it is a negative angle.


## Example 1:

a) Change $15.735^{\circ}$ to degrees, minutes, and seconds.

b) Write north latitude $39^{\circ} 5^{\prime} 34^{\prime}$ as a decimal rounded to the nearest thousandth.

## PRACTICE 1:

1) Change each measure to degrees, minutes, and seconds.
a) $34.95^{\circ}$
b) $-72.775^{\circ}$
2) Write each measure as a decimal to the nearest thousandth.
a) $-128^{\circ} 30^{\prime} 45^{\prime \prime}$
b) $29^{\circ} 6^{\prime} 6^{\prime \prime}$

Quadrantal Angle - an angle in standard position whose terminal side coincides with one of the axes. A full rotation around a circle is $\mathbf{3 6 0}^{\circ}$. Measures of more than $360^{\circ}$ represent multiple rotations.





Example 2: Find the angle measure represented by each rotation.
a) 5.5 rotations clockwise.
b) 3.3 rotations counterclockwise

PRACTICE 2: Find the angle measure represented by each rotation.
a) 2 rotations clockwise.
b) 4.5 rotations counterclockwise
coterminal angles - angles in standard position that have the same terminal side; measures will differ by a multiple of $360^{\circ}$

- (informal ) two or more angles that end @ the same place

Coterminal
Angles

If $\boldsymbol{\theta}$ is the degree measure of an angle, then all angles measuring $\boldsymbol{\theta}+\mathbf{3 6 0 \mathbf { k } ^ { \mathbf { o } }}$, where $\mathbf{k}$ is an integer, are coterminal with $\boldsymbol{\theta}$.

Example 3A: Identify all angles coterminal with $75^{\circ}$.
Any angle coterminal with an angle of $75^{\circ}$ can be written as $\mathbf{7 5 ^ { \circ }}+\mathbf{3 6 0} \boldsymbol{k}^{\circ}$, where $\boldsymbol{k}$ is the number of rotations around the circle.

- The value of $\boldsymbol{k}$ is a positive integer if the rotations are counterclockwise and
- a negative integer if the rotations are clockwise.

Example 3B: Identify all angles that are coterminal with each angle. Then find one positive angle and one negative angle that are coterminal with the angle.
a) $45^{\circ}$
b) $225^{\circ}$

Example 4: If each angle is in standard position, determine a coterminal angle that is between $0^{\circ}$ and $360^{\circ}$. State the quadrant in which the terminal side lies.
a) $775^{\circ}$
b) $-1297^{\circ}$

PRACTICE 3: Identify all angles that are coterminal with each angle. Then find one positive angle and one negative angle that are coterminal with the angle.
a) $22^{\circ}$
b) $-170^{\circ}$

PRACTICE 4: If each angle is in standard position, determine a coterminal angle that is between $0^{\circ}$ and $360^{\circ}$. State the quadrant in which the terminal side lies.
a) $453^{\circ}$
b) $-798^{\circ}$

## Reference Angle

- (formal definition) an acute angle (measures less than $\mathbf{9 0}^{\circ}$ ) formed between the terminal side of an angle and the $\boldsymbol{x}$-axis.
- (informal definition) how close an angle is to the $\boldsymbol{x}$-axis.





For any angle $\boldsymbol{\theta}, \mathbf{0}^{\circ}<\boldsymbol{\theta}<\mathbf{3 6 0}{ }^{\circ}$, its reference angle $\boldsymbol{\theta}^{\prime}$ is defined by

## Reference

a) $\boldsymbol{\theta}$, when the terminal side is in Quadrant I,
b) $\mathbf{1 8 0} 0^{\circ}$ - $\boldsymbol{\theta}$, when the terminal side is in Quadrant II,

Angle Rule
c) $\boldsymbol{\theta}-\mathbf{1 8 0}{ }^{\circ}$, when the terminal side is in Quadrant III, and
d) $360^{\circ}-\boldsymbol{\theta}$, when the terminal side is in Quadrant IV.

Example 5: Find the measure of the reference angle for each angle. Convert to a standard angle first ( $0^{\circ}<\theta<360^{\circ}$ ), if necessary, then apply the reference angle rules.
a) $120^{\circ}$
b) $-135^{\circ}$
c) $612^{\circ}$
d) $-195^{\circ}$

PRACTICE 5: Find the measure of the reference angle for each angle. Convert to a standard angle first ( $0^{\circ}<\theta<360^{\circ}$ ), if necessary, then apply the reference angle rules.
a) $227^{\circ}$
b) $-210^{\circ}$
c) $563^{\circ}$
d) $-1045^{\circ}$

