STARTER 5.2

Find the reference angle for each angle in standard position.

1) 320°
2) -545^{0}
3) -225^{0}
4) 89°

Vocabulary of Angles ...
Initial side

Terminal side

Vertex
Standard position

Quadrant	I	II	III	IV
Reference Angle				

5.2: Trigonometric Ratios in Right Triangles

Objective:

- Find the values of trigonometric ratios for acute angles of right triangles.

In a right triangle, one of the angles measures 90°, and the remaining two angles are acute and complementary.
acute angle - an angle that measures less than 90° complementary angles - two angles that add up to 90° hypotenuse - the longest side
legs - the two perpendicular sides of a right triangle adjacent side - the leg that is a side of an acute angle
opposite side - the leg opposite an acute angle

TRIGONOMETRIC RATIOS

	Words	Symbol	Definition	
Trigonometric Ratios	$\operatorname{sine} \theta$	$\sin \theta$	$\sin \theta=\frac{\operatorname{side~opposite~}}{\text { hypotenuse }}$	Side Opposite
	$\operatorname{cosine} \theta$	$\cos \theta$	$\cos \theta=\frac{\text { side adjacent }}{\text { hypotenuse }}$	
	tangent θ	$\tan \theta$	$\tan \theta=\frac{\text { side opposite }}{\text { side adjacent }}$	
Side Adjacent				

SOH-CAH-TOA

$\operatorname{Sin} \theta=\frac{\text { Opposite }}{\text { Hypotenuse }}$
$\operatorname{Cos} \theta=\frac{\text { Adjacent }}{\text { Hypotenuse }}$

CAUTION:!!

$\sin \theta$ is read "the \sin of θ." Writing "sin" by itself is meaningless and must be avoided. NAKED TRIG FUNCTIONS!

Example 1: Find the values of the sine, cosine, and tangent for $\angle \boldsymbol{B}$.
Leave answers to simplest fraction or radical form.

PRACTICE 1: Find the values of the sine, cosine, and tangent for $\angle \boldsymbol{T}$. Leave answers to simplest fraction or radical form.

RECIPROCAL IDENTITIES

	Words	Symbol	Definition	Side Opposite	
Reciprocal Trigonometric Ratios	cosecant θ	$\csc \theta$	$\csc \theta=\frac{1}{\sin \theta}$ or $\frac{\text { hypotenuse }}{\text { side opposite }}$		
	secant θ	$\sec \theta$	$\sec \theta=\frac{1}{\cos \theta}$ or $\frac{\text { hypotenuse }}{\text { side adjacent }}$		
	cotangent θ	$\cot \theta$	$\cot \theta=\frac{1}{\tan \theta}$ or $\frac{\text { side adjacent }}{\text { side opposite }}$		

$$
\csc \theta=\frac{1}{\sin \theta} \quad \sec \theta=\frac{1}{\cos \theta} \quad \cot \theta=\frac{1}{\tan \theta}
$$

Example 2:

a) If $\cos \theta=\frac{3}{4}$, find $\sec \boldsymbol{\theta}, \sin \boldsymbol{\theta}$, and $\cot \boldsymbol{\theta}$.
b) If $\csc \theta=1.345$, find $\sin \theta$.

PRACTICE 2:

a) If $\sin \theta=\frac{2}{5}$, find $\csc \theta, \cos \theta$, and $\cot \theta$.
b) If $\cot \theta=1.5$, find $\sin \theta$.

Example 3: Find the values of the six trigonometric ratios for $\angle \boldsymbol{P}$.
Leave answers to simplest fraction or radical form.

PRACTICE 3: Find the values of the six trigonometric ratios for $\angle \boldsymbol{P}$. Leave answers to simplest fraction or radical form.

RECALL: Special Triangles $30^{\circ}-60^{\circ}-90^{\circ}$ and $45^{\circ}-45^{\circ}-90^{\circ}$

Complete the table:

θ	$\sin \theta$	$\cos \theta$	$\tan \theta$	$\csc \theta$	$\boldsymbol{\operatorname { s e c }} \theta$	$\boldsymbol{\operatorname { c o t } \theta}$
30°						
45°						
60°						

Look at the values that are the same in this chart. Do you notice a pattern?

Example 4: Evaluate the following expressions without using a calculator.
a) $\cos 30^{\circ} \sec 30^{\circ}$
b) $\left(\sin 60^{\circ}\right)^{2}+\left(\cos 60^{\circ}\right)^{2}$
c) $\sin 45^{\circ} \cos 45^{\circ}$

RECALL:

- Two angles are said to be complementary when they add up to 90°.
- The angles $\boldsymbol{\theta}$ and $90^{\circ}-\boldsymbol{\theta}$ are complementary since they add up to 90°.
- $\operatorname{Sin} 30^{\circ}=\operatorname{Cos}\left(90^{\circ}-30^{\circ}\right)=\operatorname{Cos} 30^{\circ}$.

	$\sin \theta=\cos \left(90^{\circ}-\boldsymbol{\theta}\right)$	$\cos \boldsymbol{\theta}=\sin \left(90^{\circ}-\boldsymbol{\theta}\right)$
Cofunctions	$\tan \theta=\cot \left(90^{\circ}-\boldsymbol{\theta}\right)$	$\cot \theta=\tan \left(90^{\circ}-\boldsymbol{\theta}\right)$
	$\sec \theta=\csc \left(90^{\circ}-\boldsymbol{\theta}\right)$	$\csc \theta=\sec \left(90^{\circ}-\boldsymbol{\theta}\right)$

Example 5: Find the complements of each angle and the required cofunction. Complete the table.

$\boldsymbol{\theta}$	Complement	$\sin \boldsymbol{\theta}$	$\cos \left(90^{0}-\boldsymbol{\theta}\right)$	$\tan \boldsymbol{\theta}$	$\cot \left(90^{0}-\boldsymbol{\theta}\right)$	$\sec \boldsymbol{\theta}$	$\csc \left(90^{0}-\boldsymbol{\theta}\right)$
26^{0}							
48^{0}							
72^{0}							
39^{0}							
16^{0}							

