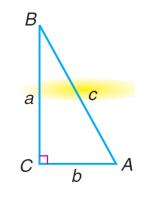
STARTER 5.2

Find the reference angle for each angle in standard position.

1) 320°	2) -545⁰	3)-225°	4) 89 °
-,	-,	-,	- /

Vocabulary of Angles		
Initial side	Standard position	
Terminal side		
Vertex		

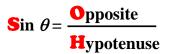
Quadrant	Ι	II	III	IV
Reference Angle				

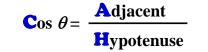

5.2: Trigonometric Ratios in Right Triangles

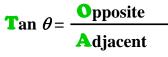
Objective:

• Find the values of trigonometric ratios for acute angles of right triangles.

In a right triangle, one of the angles measures 90°, and the remaining two angles are <u>acute</u> and <u>complementary</u>.

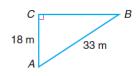

acute angle – an angle that measures less than 90°
complementary angles – two angles that add up to 90°
hypotenuse – the longest side
legs – the two perpendicular sides of a right triangle
adjacent side – the leg that is a side of an acute angle
opposite side – the leg opposite an acute angle




TRIGONOMETRIC RATIOS

	Words	Symbol	Definition				
Trigonometric Ratios	sine θ	$\sin \theta$	hypotenuse		Hypotenuse		
	cosine θ	$\cos \theta$	$\cos \theta = \frac{\text{side adjacent}}{\text{hypotenuse}}$	Opposite	θ		
	tangent θ	tan $ heta$	$\tan \theta = \frac{\text{side opposite}}{\text{side adjacent}}$		Side Adjacent		

SOH-CAH-TOA



CAUTION!!!

Sin θ is read "the sin of θ ." Writing <u>"sin"</u> by itself is meaningless and **must be avoided**. NAKED TRIG FUNCTIONS!

Example 1: Find the values of the sine, cosine, and tangent for $\angle B$.

Leave answers to simplest fraction or radical form.

15 in.

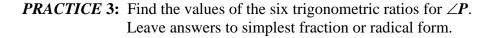
PRACTICE 1: Find the values of the sine, cosine, and tangent for $\angle T$. Leave answers to simplest fraction or radical form.

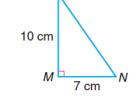
RECIPROCAL IDENTITIES

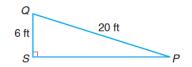
	Words	Symbol	Definition	
Reciprocal Trigonometric Ratios	$\operatorname{cosecant} \theta$	$\csc \theta$	$\csc \theta = \frac{1}{\sin \theta} \text{ or } \frac{\text{hypotenuse}}{\text{side opposite}}$	Side
	secant θ	$\sec\theta$	sec $\theta = \frac{1}{\cos \theta}$ or $\frac{\text{hypotenuse}}{\text{side adjacent}}$	Opposite θ
	cotangent θ	$\cot \theta$	$\cot \theta = \frac{1}{\tan \theta} \text{ or } \frac{\text{side adjacent}}{\text{side opposite}}$	Side Adjacent

$$\csc \theta = \frac{1}{\sin \theta} \qquad \qquad \sec \theta = \frac{1}{\cos \theta} \qquad \qquad \cot \theta = \frac{1}{\tan \theta}$$

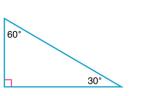
Example 2:

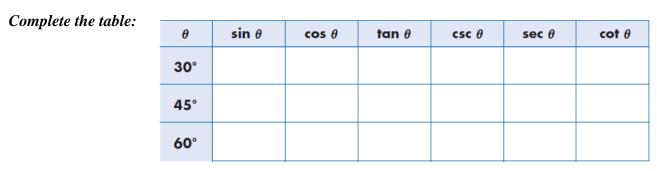

a) If $\cos\theta = \frac{3}{4}$, find $\sec\theta$, $\sin\theta$, and $\cot\theta$.


b) If $\csc \theta = 1.345$, find $\sin \theta$.


b) If $\cot \theta = 1.5$, find $\sin \theta$.

PRACTICE 2:


- a) If $\sin \theta = \frac{2}{5}$, find $\csc \theta$, $\cos \theta$, and $\cot \theta$.
- *Example* 3: Find the values of the six trigonometric ratios for $\angle P$. Leave answers to simplest fraction or radical form.



RECALL: Special Triangles 30°-60°-90° and 45°-45°-90°

45°

45

Look at the values that are the same in this chart. Do you notice a pattern?

Example 4: Evaluate the following expressions <u>without using a calculator</u>.

a) cos 30° sec 30°
b) (sin 60°)² + (cos 60°)²
c) sin 45° cos 45°

RECALL:

- Two angles are said to be complementary when they add up to 90°.
- The angles $\frac{\theta}{\theta}$ and $\frac{90^\circ}{\theta} \frac{\theta}{\theta}$ are <u>complementary</u> since they add up to $\frac{90^\circ}{\theta}$.
- $\sin 30^\circ = \cos (90^\circ 30^\circ) = \cos 30^\circ$.

	$\sin \theta = \cos (90^{\circ} - \theta)$	$\cos \theta = \sin (90^\circ - \theta)$	
Cofunctions	$\tan \theta = \cot (90^{\circ} - \theta)$	$\cot \theta = \tan (90^{\circ} - \theta)$	
	$\sec \theta = \csc (90^{\circ} - \theta)$	$\csc \theta = \sec (90^{\circ} - \theta)$	

Example 5: Find the complements of each angle and the required cofunction. Complete the table.

θ	Complement	$\sin heta$	$\cos{(90^0 - \theta)}$	$\tan \theta$	$\cot{(90^0 - \theta)}$	$\sec \theta$	$\csc(90^0 - \theta)$
26 ⁰							
48 ⁰							
72 ⁰							
39 ⁰							
16 ⁰							