STARTER 5.3

1) Find two positive and two negative angles that are coterminal with 86°.

5.3: Trigonometric Functions on the Unit Circle

Objectives:

- Find the values of the six trigonometric functions using the unit circle.
- Find the values of the six trigonometric functions of an angle in standard position given a point on its terminal side.

8 m

Ν

M

RECALL: Fill in the following chart using trig ratios. These are common angles, so you should have these values <u>memorized</u> (concentrate on sine, cosine, and tangent).

θ	$\sin heta$	$\cos \theta$	$\tan \theta$	$\csc \theta$	$\sec \theta$	$\cot \theta$
30⁰						
45 ⁰						
60 ⁰						

CIRCULAR (Trigonometric) FUNCTIONS (when the radius = 1)

Complete the chart for each quadrantal (multiple of 90°) angle.

θ	$\sin heta$	$\cos \theta$	$\tan \theta$	$\csc \theta$	$\sec \theta$	$\cot heta$
00						
90 ⁰						
180 ⁰						
270 ⁰						

NOTE:

- The unit circle is a *parametric function*. x and y are in terms of a third variable, θ .
- The radius of a circle is defined as a positive value. Therefore, the signs of the six trigonometric functions are determined by the signs of the coordinates of *x* and *y* in each quadrant.
- Due to symmetry, points on quadrants II, III, and IV are mirror images of the points on quadrant I.

5.3: Trigonometric Functions on the Unit Circle

Example 1: Use the unit circle to find each value.

PRACTICE 1: Use the unit circle to find each value.

a) $\sin(-180^{\circ})$ b) $\tan 270^{\circ}$ c) $\cos 45^{\circ}$

Example 2: Using the unit circle, find all six trigonometric values for a 210° angle.

PRACTICE 2: Using the unit circle, find all six trigonometric values for a 135⁰ angle.

Fill in this chart with the appropriate sign.

Function	Quadrant						
Function	I	II	III	IV			
$\sin \theta$ or $\csc \theta$							
$\cos \theta$ or $\sec \theta$							
$\tan \theta$ or $\cot \theta$							

Trigonometric Functions of an Angle in Standard Position $(r \neq 1)$

For any angle in standard position with measure θ , a point P(x, y) on its terminal side, and $r = \sqrt{x^2 + y^2}$, the trigonometric functions of θ are as follows. sin $\theta = \frac{y}{r}$ cos $\theta = \frac{x}{r}$ tan $\theta = \frac{y}{x}$ cos $\theta = \frac{r}{y}$ sec $\theta = \frac{r}{x}$ cot $\theta = \frac{x}{y}$

Example 3: Find the values of the six trigonometric functions for angle θ in standard position if a point with coordinates (5, -12) lies on its terminal side.

PRACTICE 3: Find the values of the six trigonometric functions for angle θ in standard position if a point with coordinates (-5, 3) lies on its terminal side.

Example 4: Suppose θ is an angle in standard position whose terminal side lies in **Quadrant III**. If $\sin \theta = -\frac{4}{5}$, find the values of the remaining five trigonometric functions of θ .

PRACTICE 4A: Suppose θ is an angle in standard position whose terminal side lies in Quadrant IV. If $\sec \theta = \frac{\sqrt{29}}{5}$, find the values of the remaining five trigonometric functions of θ .

PRACTICE 4B: Find $\csc \theta$ if $\cos \theta = \frac{8}{17}$ and the terminal side of θ is in Quadrant III.