6.1: Angles and their Measure

Terms You Need to Know

- Revolution - a complete circular motion $\left(360^{\circ}\right)$.
- Degree - a common unit for measuring small angles.
- Radian measure - the number of radian units in the length of an arc. $2 \pi=360^{\circ}$
- Standard position - an angle's position where the vertex is at the origin and its initial ray (side) is along the x-axis.
- Quadrantal Angle- the terminal ray of an angle lies along an axis (multiples of 90° or $\frac{\pi}{2}$).

EXAMPLE

Draw each angle.
(a) 45°
(b) -90°
(c) 225°
(d) 405°

Arc Length of a Circle

Arc Length

For a circle of radius r, a central angle of θ radians subtends an arc whose length s is

$$
s=r \theta
$$

Arc Length of a Circle

EXAMPLE

Find the length of the arc of a circle of radius 4 meters subtended by a central angle of 0.5 radian.

$$
s=r \theta
$$

Arc Length and Area of a Sector

Let s be an arc length and A be the area of a sector with central angle θ

- If θ is in degrees, then

$$
s=\frac{\theta}{360} \cdot 2 \pi r, \quad A=\frac{\theta}{360} \cdot \pi r^{2}
$$

- If θ is in radians, then

$$
s=r \theta, \quad A=\frac{1}{2} r^{2} \theta
$$

EXAMPLE

Finding the Area of a Sector of a Circle

Find the area of the sector of a circle of radius 5 feet formed by an angle of 40°. Round the answer to two decimal places.

$$
A=\frac{1}{2} r^{2} \theta
$$

EXAMPLE Converting from Degrees to Radians
Convert each angle in degrees to radians.
(a) 60°
(b) 150°
(c) -45°
(d) 90°
(e) 107

$$
1 \text { degree }=\frac{\pi}{180} \text { radian } \quad 1 \text { radian }=\frac{180}{\pi} \text { degrees }
$$

EXAMPLE Converting Radians to Degrees

Convert each angle in radians to degrees.
(a) $\frac{\pi}{6}$ radian
(b) $\frac{3 \pi}{2}$ radians
(c) $-\frac{3 \pi}{4}$ radians
(d) $\frac{7 \pi}{3}$ radians
(c) 3 radians

Angular and Linear Motion

- Angular speed is measured in units like revolutions per minute.
- Linear speed is measured in units like miles per hour.

As the object travels along the circle, suppose that θ (measured in radians) is the central angle swept out in time \boldsymbol{t}. Then the angular speed ω of this object is the angle (measured in radians) swept out divided by the elapsed time.

$$
\omega=\frac{\theta}{t}
$$

Suppose an object moves along a circle of radius r at a constant speed. If s is the distance traveled in time t along this circle, then the linear speed v of the object is defined as

$$
v=\frac{s}{t}
$$

EXAMPLE

Finding the Distance between Two Cities See Figure 15 (a). The latitude of a location L is the angle formed by a ray drawn from the center of Earth to the Equator and a ray drawn from the center of Earth to L. See Figure 15(b). Glasgow, Montana, is due north of Albuquerque, New Mexico. Find the distance between Glasgow ($48^{\circ} 9^{\prime}$ north latitude) and Albuquerque ($35^{\circ} 5^{\prime}$ north latitude). Assume that the radius of Earth is 3960 miles.

\square

Precalculus

