## 6.1: Polynomials

## Monomial

- A number or a product of numbers and variables with whole number exponents. It has one term, it is the simplest type of polynomial. The degree of a monomial is the sum of the exponents of the variables.


## Polynomial

- A monomial or a sum or difference of monomials. Each monomial in a polynomial is a term. Polynomials have no variables in denominators or exponents, no roots or absolute values of variables, and all variables have whole number exponents. The degree of a polynomial is the greatest exponent of the polynomial.
- A polynomial function is a function of the form

$$
f(x)=a_{n} x^{n}+a_{n-1} x^{n-1}+\cdots+a_{1} x+a_{0}
$$

where $\boldsymbol{a}_{\boldsymbol{n}} \neq 0$ and the exponents are all whole numbers.
For this polynomial function, $\boldsymbol{a}_{\boldsymbol{n}} \boldsymbol{x}^{\boldsymbol{n}}$ is the leading term, $\boldsymbol{a}_{\boldsymbol{n}}$ is the leading coefficient, $\boldsymbol{a}_{\mathbf{0}}$ is the constant, and $\boldsymbol{n}$ is the degree.

- A polynomial function is in standard form if its terms are written in descending order of exponents from left to right.

| Polynomials | $3 x^{4}$ | $2 x^{3}+4 y^{3}$ | $\frac{3}{4} a^{3} b^{5}$ | $0.25 z^{12}$ | $3 t^{2}-5 t^{6}$ |
| :--- | :--- | :--- | :--- | :--- | :--- |
| NOT Polynomials | $3^{x}$ | $\left\|2 b^{3}+4 b\right\|$ | $\frac{8}{5 y^{3}}$ | $\frac{1}{2} \sqrt{x}$ | $3 t^{0.25}-5 t^{3}$ |


| CLASSIFTING POLYNOMIALS |  |  |  |  |
| :---: | :--- | :--- | :---: | :--- |
| Degree | Name Using <br> Degree | Polynomial Example | Number <br> of Terms | Name Using <br> Number of Terms |
| 0 | Constant | 8 | 1 | Monomial |
| 1 | Linear | $2 x+5$ | 2 | Binomial |
| 2 | Quadratic | $3 x^{2}$ | 1 | Monomial |
| 3 | Cubic | $4 x^{3}-5 x^{2}-2 x$ | 3 | Trinomial |
| 4 | Quartic | $2 x^{4}+3 x^{2}$ | 2 | Binomial |
| 5 | Quintic | $-3 x^{5}+2 x^{3}-4 x+8$ | 4 | Polynomial of <br> 4 |
|  |  |  |  |  |

Example 1) Identify the degree of each monomial.

1) $3 x^{4} y^{5}$
2) $\mathbf{1 2}$
3) $2 a^{3} b^{6} c^{4}$
4) $2 x^{3} y^{2} z$

Example 2) Rewrite each polynomial in standard form. Then identify the leading term, leading coefficient, degree, and number of terms. Name the polynomial.

1) $2 x+4 x^{3}-1$
2) $8 x^{3}-12 x+x^{5}-2$

## ADDING and SUBTRACTING POLYNOMIALS

Example 3) Simplify. Write your answer in standard form. Classify each result by the number of terms.
a) $\left(3 x^{2}+8-5 x\right)+\left(8 x^{3}+2-x^{2}-3 x\right)$
b) $\left(5 x^{3}+12-6 x^{2}\right)-\left(15 x^{4}+2 x^{2}-x^{3}+4\right)$
c) $\left(30 x^{3}-49 x^{2}+7 x\right)+\left(50 x^{3}-75-60 x^{2}\right)$
d) $\left(7 x^{3}+9 x^{2}-8 x+11\right)-\left(5 x^{3}-13 x-16\right)$

Example 4) Find a polynomial expression in terms of $\boldsymbol{x}$ for the surface area of each figure.
a)

b)


Example 5) DO: \#45a, 56-63 ALL, P. 411-412

