

Angular Displacement	t
1 revolution = 2π radians	
$180^\circ = \pi$ radians	
mine the angular displacement in radians of 4.5 reve carest tenth.	olutions. Round to
1	Angular Displacement 1 revolution = 2π radians $180^\circ = \pi$ radians rmine the angular displacement in radians of 4.5 revolution reactions of 4.5 revolutions o

As the object travels along the circle, suppose that θ (measured in radians) is the central angle swept out in time *t*. Then the **angular speed or velocity**, ω of this object is the angle (measured in radians) swept out divided by the elapsed time.

 $\omega = \frac{\theta}{t}$

STARTER 6.2

 Determine each angular displacement in radians. Round to the nearest tenth.

 B. 5.8 revolutions
 7, 710 revolutions

 Determine each angular velocity. Round to the nearest tenth.

 8. 3.2 revolutions in 7 seconds
 9. 700 revolutions in 15 minutes

Suppose an object moves along a circle of radius r at a constant speed. If s is the distance traveled in time t along this circle, then the **linear speed or velocity** v of the object is defined as

Angular and Linear Motion • Linear speed/velocity is measured in units like miles per hour (mph). If an object moves along a circle of radius of r units, then its linear velocity, v is given by $v = r \frac{\theta}{t}$, where $\frac{\theta}{t}$ represents the angular velocity in radians per unit of time.

Angular and Linear Motion Determine the linear velocity of a point rotating at an angular velocity of 17π radians per second at a distance of 5 centimeters from the center of the rotating object. Round to the nearest tenth. ENTERTAINMENT Refer to the application at the beginning of the lesson. Determine the linear velocity for each rider.

Angular and Linear Motion

CAR RACING The tires on a race car have a diameter of 30 inches. If the tires are turning at a rate of 2000 revolutions per minute, determine the race car's speed in miles per hour (mph).

$$s = r\theta$$

$$\frac{s}{r\theta} = \frac{r\theta}{r\theta}$$

t

$$v = r\omega$$

t

