

As the object travels along the circle, suppose that θ (measured in radians) is the central angle swept out in time \boldsymbol{t}. Then the angular speed or velocity, ω of this object is the angle (measured in radians) swept out divided by the elapsed time.

Angular and Linear Motion

ENTERTAINMENT The Children's Museum in Indianapolis, Inciana, houses an antique carousel. The carousel contains three concentric circles of animals. The inner circle of animals is approximately 11 feet from the center, and the outer circle of animals is approximately 20 feet from the center. The carousel makes 2_{8}^{5} rotations per minute. Determine
the angular and linear velocities of someone riding an animal
in the inner circle and of someone riding an animal in the some row
in the outer circle.
(3) ENTERTAINMENI Refer to the application at the beginning of the lesson. Determine the angular velocity for each rider in radians per second.

STARTER 6.2

Determine each angular displacement in radians. Round to the nearest tenth.
$\begin{array}{ll}\text { 6. } 3.8 \text { revolutions } & 7.710 \text { revolutions }\end{array}$
Determine each angular velocity. Round to the nearest tenth. $\begin{array}{ll}8.3 .2 \text { revolutipns in } 7 \text { seconds } & \text { 9. } 700 \text { revolutions in } 15 \text { minules }\end{array}$

Angular and Linear Motion

- Linear speed/velocity is measured in units like miles per hour (mph).

If an object. moves along a circle of radius of r units, then its linear velocity. v is given by
$\checkmark r_{t}^{\theta}$
where ${ }_{t}^{\theta}$ represents the angular velocity in radians per urit of time

Angular and Linear Motion

