6.2: Multiplying Polynomials

Example 1) Multiplying a Monomial and a Polynomial

Find each product. Classify the result by the number of terms.
a) $3 x^{2}\left(8 x^{3}-4 x^{2}-3 x+2\right)$
b) $2 a^{3} b\left(4 a^{3}+3 a^{2} b-4 a b^{2}-b^{3}\right)$

Example 2) Multiplying Polynomials

Find each product. Classify the result by the number of terms.
a) $(x-2)\left(1+4 x-3 x^{2}\right)$
b) $\left(x^{2}+3 x-5\right)\left(x^{2}-x+1\right)$
c) $(x+3)(4 x-1)(3 x+5)$
d) $(x+3)(x+2)(x-3)(x-2)$

Example 3) Expanding a power of a Binomial

Find each product. Classify the result by the number of terms.
a) $(x+3 y)^{2}$
b) $(x+y)^{3}$
c) $(2 x-3 y)^{3}$

Binomial Expansion and Pascal's Triangle		
	Binomial Expansion	Pascal's Triangle (Coefficients)
$(a+b)^{0}=$	1	1
$(a+b)^{1}=$	$a+b$	11
$(a+b)^{2}=$	$a^{2}+2 a b+b^{2}$	121
$(a+b)^{3}=$	$a^{3} b+3 a^{2} b+3 a b^{2}+b^{3}$	$\begin{array}{lllll}1 & 3 & 3 & 1\end{array}$
$(a+b)^{4}=$	$a^{4}+4 a^{3} b+6 a^{2} b^{2}+4 a b^{3}+b^{4}$	$\begin{array}{lllll}1 & 4 & 6 & 4 & 1\end{array}$
$(a+b)^{5}=$	$a^{5}+5 a^{4} b+10 a^{3} b^{2}+10 a^{2} b^{3}+5 a b^{4}+b^{5}$	$\begin{array}{lllllll}1 & 5 & 10 & 10 & 5 & 1\end{array}$

Binomial Expansion

For a binomial expansion of the form $(a+b)^{n}$, the following statements are true.

1) There are $n+1$ terms.
2) The coefficients are the numbers from the nth row of Pascal's triangle.
3) The exponent of a is n in the first term, and the exponent decreases by 1 in each successive term.
4) The exponent of b is 0 in the first term, and the exponent increases by 1 in each successive term.
5) The sum of the exponents in any term is \boldsymbol{n}.

Example 4) Using Pascal's Triangle to Expand Binomial Expressions

 Expand each expression.a) $(y-3)^{4}$
b) $(4 z+5)^{3}$
c) $(3 x-2 y)^{5}$

Example 5) DO \# 52, 58-69 ALL, P. 419-420

