6.4: Factoring Polynomials

Recall:

- If a number is divided by any of its factors, the remainder is 0 . Likewise, if a polynomial is divided by any of its factors, the remainder is 0 .
- The Remainder Theorem states that if a polynomial $P(x)$ is divided by $(x-a)$, the remainder is the value of the function at a. So, if $(x-a)$ is a factor of $P(x)$, then $P(a)=0$.

Factor Theorem

For a polynomial $P(x), x-a$ is a factor if and only if $P(a)=0$.

1) If $P(a)=0$, then $x-a$ is a factor of $P(x)$.
2) If $x-a$ is a factor of $P(a)$, then $P(a)=0$

Example 1) Determining Whether a Linear Binomial is a Factor

 Determine whether the given binomial is a factor of the polynomial $P(x)$.a) $(x-2) ; P(x)=x^{2}+2 x-3$
b) $(x+4) ; P(x)=2 x^{4}+8 x^{3}+2 x+8$

Example 2) Factoring by Grouping

Factor each expression completely.
a) $x^{3}+3 x^{2}-4 x-12$
b) $2 x^{3}+x^{2}+8 x+4$

Special Factoring

Difference of Two Squares $\quad a^{2}-b^{2}=(a-b)(a+b)$
$\begin{array}{ll}\text { Sum of Two Cubes } & a^{3}+b^{3}=(a+b)\left(a^{2}-a b+b^{2}\right) \\ \text { Difference of Two Cubes } & a^{3}-b^{3}=(a-b)\left(a^{2}+a b+b^{2}\right)\end{array}$

Example 3) Special Factoring

Factor each expression completely.
a) $3 x^{2}-12 y^{2}$
b) $5 x^{4}+40 x$
c) $8 x^{3}-27$
d) $2 x^{5}-16 x^{2}$

YOUR TURN: Factor each expression completely.

1) $3 x^{3}+x^{2}-27 x-9$
2) $x^{6}-14 x^{4}+49 x^{2}$
3) The polynomial $a x^{3}+b x^{2}+c x+d$ is factored as $3(x-2)(x+3)(x-4)$. What are the values of a and d ?

Use the Factor Theorem to verify that each linear binomial is a factor of the given polynomial. Then use Synthetic Division to write the polynomial as a product.
4) $(x-2) ; P(x)=x^{4}-2 x^{3}+5 x^{2}-9 x-2$
5) $(x+2) ; P(x)=2 x^{5}+4 x^{4}-6 x^{2}-9 x+6$

