## 7.2: INVERSES OF RELATIONS AND FUNCTIONS

- To graph the inverse relation, reflect each point across the line $y=x$. This is equivalent to switching the $x$ - and $y$-values in each ordered pair of the relation.


## Example 1: Graphing Inverse Relations

Graph the relation and connect the points. Then graph the inverse. Identify the domain and range of each relation.


| $x$ | 0 | 1 | 2 | 4 | 8 |
| :---: | :---: | :---: | :---: | :---: | :---: |
| $y$ | 2 | 4 | 5 | 6 | 7 |


|  | Domain | Range |
| :--- | :--- | :--- |
| $f^{-1}(x)$ |  |  |

## HOW TO FIND THE INVERSE OF A RELATION

- Given $f(x)$. Rewrite it as $y$, then switch $x$ and $y$.
- Solve for $y$.
- Rewrite the computed $y$ as $f^{-1}(x)$.

Example 2: Use inverse operations to write the inverse of each function. Then identify the domain and range.
a) $f(x)=3 x+4$
b) $g(x)=x^{2}-6 x+9$
c) $f(x)=\frac{1}{2}(4-3 x)$
d) $g(x)=3 \sqrt{x+5}-4$

Example 3: Find the inverse of the function then write and graph the function and its inverse.
a) $f(x)=3 x-2$


Example 4: the A clerk needs to price a digital camera returned by a customer. The customer paid a total of \$103.14, which included a gift-wrapping charge of \$3 and $8 \%$ sales tax. What price should the clerk mark on the tag?

Example 5: The formula $C=\frac{5}{9}(F-32)$ gives degrees Celsius as a function of degrees Fahrenheit. Find the inverse of this function to convert degrees Celsius to Fahrenheit and use it to find $16^{\circ} \mathrm{C}$ in degrees Fahrenheit.

Example 6: Eliza's auto repair bill includes $\$ 175$ for parts and $\$ 35$ per hour for labor. The bill can be expressed as a function of hours $x$ with the function $f(x)=175+35 x$. Which statement explains the meaning of the inverse of the function?
(F) Number of hours as a function of the total bill
(G) Total bill as a function of the number of hours
(H) Cost per hour as a function of the total bill
(J) Total bill as a function of the cost per hour

RNBriones Concord High

