7.3: LOGARITHMIC FUNCTIONS

 A LOGARITHM is the exponent to which a specified base is raised to obtain a given value.

Example 1: Write each exponential equation in logarithmic form or vice-versa.

Exponential Equation	Logarithmic Form	Logarithmic Form	Exponential Equation
$2^3 = 8$		$\log_7 49 = 2$	
$4^0 = 1$		$\log_3 81 = 4$	
$5^{-2} = 0.04$		$\log_8 0.125 = -1$	
$3^{x} = 8$		$\log_{6} 6 = 1$	
$25 = 5^2$		$\log_5 1 = 0$	

SPECIAL PROPERTIES OF LOGARITHMS

For any base *b* such that b > 0 and $b \neq 1$,

a) Logarithm of Base *b*: $\log_b b^n = n$ b) Logarithm of 1: $\log_b 1 = 0$

• A logarithm with **base 10** is called a **common logarithm**. If no base is written for a logarithm, the base is assumed to be 10. For example, $log5 \Rightarrow log_{10} 5$.

b) $\log_4\left(\frac{1}{64}\right)$

Example 2: Evaluate by using mental math.

a) $\log 100 =$

= c)
$$\log_{25}(0.04) =$$

Because logarithms are the inverses of exponents, the inverse of an exponential function, such as $y = 2^x$,

is a **logarithmic function**, such as $y = \log_2(x)$.

You may notice that the **domain** and **range** of each function are **switched**.

	Exponential Equation: $y = 2^x$	Logarithmic Form: $y = \log_2(x)$
Domain	all real numbers (\mathbb{R})	x > 0
Range	y > 0	all real numbers ($\mathbb R$)

Example 3: Use the given *x*-values to graph each function. Then graph its inverse. Describe the domain and range of the inverse function.

Domain:

Range:

Domain:

Range:

Example 4: Chemists regularly test rain samples to determine the rain's acidity, or concentration of hydrogen ions (H⁺). Acidity is measured in pH, as given by the function

$$pH = -\log \left[H^+ \right]$$
, where [H⁺] represents the

hydrogen ion concentration in moles per liter.

Find the pH of rainwater from each location. a) Central New Jersey

b) Central North Dakota

RNBriones Concord High