7.3: LOGARITHMIC FUNCTIONS

- A LOGARITHM is the exponent to which a specified base is raised to obtain a given value.

Example 1: Write each exponential equation in logarithmic form or vice-versa.

| Exponential
 Equation | Logarithmic Form | Logarithmic Form |
| :--- | :--- | :--- | | Exponential |
| :---: |
| Equation |$|$| $2^{3}=8$ | |
| :--- | :--- |
| $4^{0}=1$ | $\log _{7} 49=2$ |
| $5^{-2}=0.04$ | $\log _{3} 81=4$ |
| $3^{x}=8$ | $\log _{8} 0.125=-1$ |
| $25=5^{2}$ | $\log _{6} 6=1$ |

SPECIAL PROPERTIES OF LOGARITHMS

For any base \boldsymbol{b} such that $\boldsymbol{b}>0$ and $\boldsymbol{b} \neq 1$,
a) Logarithm of Base $b: \quad \log _{b} b^{n}=n$
b) Logarithm of 1: $\log _{b} 1=0$

- A logarithm with base 10 is called a common logarithm. If no base is written for a logarithm, the base is assumed to be 10. For example, $\log 5 \Rightarrow \log _{10} 5$.

Example 2: Evaluate by using mental math.
a) $\log 100=$
b) $\log _{4}\left(\frac{1}{64}\right)=$
c) $\log _{25}(0.04)=$

Because logarithms are the inverses of exponents, the inverse of an exponential function, such as $y=2^{x}$, is a logarithmic function, such as $y=\log _{2}(x)$.

You may notice that the domain and range of each function are switched.

Exponential Equation: $\boldsymbol{y}=\mathbf{2}^{\boldsymbol{x}}$

Logarithmic Form: $y=\log _{2}(x)$
Domain
all real numbers (\mathbb{R})
$x>0$

Range
$y>0$
all real numbers (\mathbb{R})

Example 3: Use the given x-values to graph each function. Then graph its inverse. Describe the domain and range of the inverse function.
a) $f(x)=3^{x} ; \quad x=-2,-1,0,1$, and 2

x	-2	-1	0	1	2
$f(x)=3^{x}$					
x					
x					
$f^{-1}(x)=\log _{3} x$					

Domain:

Range:

Example 4: Chemists regularly test rain samples to determine the rain's acidity, or concentration of hydrogen ions (H^{+}). Acidity is measured in pH , as given by the function $p H=-\log \left[H^{+}\right]$, where $\left[\mathrm{H}^{+}\right]$represents the hydrogen ion concentration in moles per liter.
Find the pH of rainwater from each location.
a) Central New Jersey
b) $f(x)=0.8^{x} ; \quad x=-3,0,1,4$ and 7

x	-3	0	1	4	7
$f(x)=0.8^{x}$					

x					
$f^{-1}(x)=\log _{0.8} x$					

Domain:
Range:
b) Central North Dakota

