A Quick Guide to Confidence Intervals and Hypotheses Tests Using the TI-Calc

AP Statistics

Example: Confidence Intervals for One Proportion

In January 2007, Consumer Reports conducted a study of bacteria in frozen chicken sold in the US. They purchased a random selection of 525 packages of frozen chicken of various brands from different food stores in 23 different states. They tested them for various types of bacteria that cause food-borne illnesses. They found that 83% were infected with Campylobacter and 15\% were infected with Salmonella.

Construct a 95\% Confidence Interval for the proportion of chickens infected with Campylobacter.
Given:
$\mu=\hat{\boldsymbol{p}}=\mathbf{0 . 8 3}, \quad n=525$

BY HAND, USING THE FORMULA

$$
\begin{array}{ll}
\hat{p} \pm z^{*}\left(\sqrt{\frac{\hat{p} \hat{q}}{n}}\right) & \begin{aligned}
z^{*} & =\operatorname{invNorm}(\mathbf{0 . 9 7 5 , 0 , 1}) \\
& =\mathbf{1 . 9 6}
\end{aligned} \\
=\mathbf{0 . 8 3} \pm(\mathbf{1 . 9 6})\left(\sqrt{\frac{(.83)(.17)}{525}}\right) & \\
=(\mathbf{0 . 7 9 7 9}, \mathbf{0 . 8 6 2 1}) &
\end{array}
$$

Based on our sample, We are 95\% confident that all frozen chicken sold in the US infected with Campylobacter lies between 79.79% and 86.21%.

Example: Confidence Intervals for One Proportion

For $x=14, n=35$ construct a 95% confidence interval for p, the true population proportion.

USING THE TI-CALCULATOR

Solution:

Select [A:1-PropZInt...] and enter the information above, highlight [Calculate] press ENTER to get the results shown in the screen.

Example: Confidence Intervals for Difference in Two Proportions

Find a 90% confidence interval for the difference in population proportions where $x_{1}=14, n_{1}=40, x_{2}=17$, and $n_{2}=50$.

USING THE TI-CALCULATOR

Solution:

Select [B:2-PropZInt...] and enter the information above, highlight [Calculate] press ENTER to get the results shown below.

A Quick Guide to Confidence Intervals and Hypotheses Tests Using the TI-Calc

AP Statistics

Example: Confidence Intervals for One Population Mean (Given Summary Stats)

A sample of 38 items is chosen from a normally distributed population with a sample mean of 12.5 and a population standard deviation of 2.8. Construct a 95% confidence interval for the true population mean.

USING THE TI-CALCULATOR

Solution:

Choose [7:Z-interval] since we are using a z-distribution. Enter the information as shown in screen 1 below, highlight [Calculate] and press ENTER to get screen 2.

Screen 1

Example: Confidence Intervals for One Population Mean (Given the Data)

A sample of 7 items is chosen from a normal distribution with the following results: $\{1,5,6,8,12,16,18\}$. Construct a 95% confidence interval for the true population mean.

USING THE TI-CALCULATOR

Solution:

Here we are given the actual data from the sample. We can have the calculator do all of the work on the sample by entering the data into a list, say L1 as shown in screen 3. Choose [8:TInterval...] and enter the information as shown in screen 4, highlight [Calculate] press ENTER to get the results shown in screen 5.

Screen 4

Screen 5

Example: Confidence Intervals for the Difference in Two Population Means

Find a 95% confidence interval for the difference in means for two normally distributed populations from the sample information given.

$$
\begin{array}{ll}
\bar{x}_{1}=78.5 & \bar{x}_{2}=75.3 \\
\sigma_{1}=12.8 & \sigma_{2}=11.4 \\
n_{1}=40 & n_{2}=50
\end{array}
$$

USING THE TI-CALCULATOR

Solution:

Select [9:2-SampZInt...] and enter the information shown in screen 8, highlight [Calculate] press ENTER to get the results shown in screen 9.

A Quick Guide to Confidence Intervals and Hypotheses Tests Using the TI-Calc

AP Statistics

HYPOTHESIS TEST OF MEAN FOR NORMAL DISTRIBUTION (SIGMA, σ IS KNOWN) - ONE SAMPLE

Example: A sample of size 200 has a mean of 20. Assume the population standard deviation is 6 . Use the $\mathrm{TI}-83 / 84$ calculator to test the hypothesis that the population mean is not different from 19.2 with a level of significance of $\alpha=5 \%$.

Solution:

"The population mean is not different from 19.2" means the same as "the population mean is equal to 19.2." Therefore, the null and alternate hypotheses are $H_{0}: \mu=19.2$ and $H_{a}: \mu \neq 19.2$, respectively. Follow the steps below to solve the problem using the TI-83/84.
[NOTE: If the p-value $<\alpha$, reject the null hypothesis; otherwise, do not reject the null hypothesis.]

Press STAT and the right arrow twice to select TESTS.
To select the highlighted 1:Z-Test...., Press ENTER.
Use right arrow to select Stats (summary values rather than raw data) and Press ENTER.

Use the down arrow to enter the hypothesized mean, population standard deviation, sample mean, and sample size.

Select alternate hypothesis.
Press down arrow to select Calculate and press ENTER.

Results:

Since the p-value is 0.1 , do not reject the null hypothesis with an α (alpha) value of 0.10 or smaller (10% level of significance or smaller).
[In this example, $\alpha=0.05$.]

HYPOTHESIS TEST OF MEAN FOR NORMAL DISTRIBUTION (SIGMA, σ IS KNOWN) - TWO SAMPLES

Example: Two samples were taken, one from each of two populations. Use the TI-83/84 calculator to test the hypothesis that the two population means are not different with a level of significance of $\alpha=5 \%$.

Solution:

For the two samples, we have the following summary data:

$$
\begin{aligned}
& n_{1}=38, \quad \bar{x}_{1}=19.5, \quad \sigma_{1}=5 \\
& n_{2}=35, \quad \bar{x} 2=22.875, \quad \sigma_{2}=7 \\
& \\
& H_{0}: \mu_{1}=\mu_{2} \\
& H_{a}: \mu_{1} \neq \mu_{2} \\
& \text { Use } \alpha=5 \%
\end{aligned}
$$

"The two population means are not different" means the same as "the two population means are equal." Therefore, the null and alternate hypotheses are $H_{0}: \mu_{1}=\mu_{2}$ and $H_{a}: \mu_{1} \neq \mu_{2}$, respectively. Follow the steps below to solve the problem using the TI-83/84.

Press STAT and the right arrow twice to select TESTS.
Use the down arrow to select 3:2-SampZTest..., then press ENTER.

A Quick Guide to Confidence Intervals and Hypotheses Tests Using the TI-Calc

AP Statistics

Use right arrow to select Stats (summary values rather than raw data).
Enter standard deviations, mean and sample size for samples 1 and 2.
Select alternate hypothesis.
Press down arrow to select Calculate and press ENTER.

Results:

Since the p-value is 0.0186 , reject the null hypothesis with an alpha value of 0.05 or larger (5\% level of significance or larger).

Conclude that the two population means are not different.

HYPOTHESIS TEST OF PROPORTION FOR NORMAL DISTRIBUTION - ONE SAMPLE

Example: In sampling 200 people, we found that 30% of them favored a certain candy. Use $\alpha=10 \%$ to test the hypothesis that the proportion of people who favored that candy is less than 35%.

Solution:

This represents a one-sample test of proportion. So we use the "1-PropzTest" function. The sample proportion is 30% or $p=0.30$, and the hypotheses are $\mathrm{H}_{0}: p \geq 0.35$ and $\mathrm{H}_{\mathrm{a}}: p<0.35$ (claim). Hypothesized value is 0.35 .

Press STAT and the right arrow twice to select TESTS.
Use the down arrow to select 5:I-PropZTest...., then press ENTER.

Enter hypothesized proportion, number of favorable outcomes, \boldsymbol{x}, sample size, n, and select the alternate hypothesis.

Use down arrow to select Calculate and press ENTER.

AP Statistics

HYPOTHESIS TEST OF PROPORTION FOR NORMAL DISTRIBUTION - TWO SAMPLES

Example: In sampling 200 freshman college students (Sample 1), we found that 61 of them earned an A in statistics. A sample of 250 sophomore college students (Sample 2) had 60 people who earned an A in statistics. Test the hypothesis that the proportion of freshmen that earned an A in statistics is greater than the proportion of sophomores that earned an A in statistics.

Solution:

This represents a two-sample test of proportion. We use the "2-PropzTest" function. The hypotheses are $\mathrm{H}_{0}: p_{1} \leq p_{2}$ and H_{a} : $p_{1}>p_{2}$ (claim)

Press STAT and the right arrow twice to select TESTS.

Use the down arrow to select 6:2-PropZTest.o., then press ENTER.

Enter number of favorable outcomes and sample size of samples 1 and 2. Select the alternate hypothesis.

Use down arrow to select Calculate and press ENTER.

Results:

Since the $p=0.061$, reject the null hypothesis for values of $\alpha>0.061$. Conclude that the sample 1 proportion of 0.305 is significantly greater than sample 2 proportion of 0.24 when $\alpha>0.061$.

2-ProfZTest
F1 >F 2
$z=1.545304188$
$F=.061136357$
$\mathrm{F}=0611$
$\hat{F}_{1}=.305$
$\vec{F}=24$
ト= 2688888889
$r_{1}=2000$
$r_{2}=250$

