Section Overview

Sets of Numbers

Why? Understanding subsets of real numbers and ways to express them is critical in the study of algebra.

Subsets of Real Numbers

Sets of Numbers

Words: real numbers greater than 0 and less than or equal to 3

Interval Notation: (0, 3]
Set-Builder Notation: $\quad\{x \mid 0<x \leq 3\}$

Properties of Real Numbers

Why? Knowing the properties of real numbers helps students simplify expressions and calculate more quickly.

Property	Example	Property	Example
Additive Identity Property	$5+0=5$	Closure Property	$7.4+3.2=10.6 \in \mathbb{R}$
Mutiplicative Identity Property	$5 \cdot 1=5$	Commutative Property	$3+2=2+3$
		Associative Property	$2(3 \cdot 4)=(2 \cdot 3) 4$
Additive Inverse Property	$3+(-3)=0$	Product Property of Square Roots	$\sqrt{2} \cdot \sqrt{8}=\sqrt{16}=4$
Mutiplicative Inverse	$\frac{3}{5} \cdot \frac{5}{3}$		
Property	53	Quotient Property of Square Roots	$\sqrt{\frac{4}{9}}=\frac{\sqrt{4}}{\sqrt{9}}=\frac{2}{3}$
Distributive Property	$3(4+5)=3(4)+3(5)$		

Simplifying Algebraic Expressions

Why? Simplifying and evaluating expressions are essential algebra skills.

Evaluating and Simplifying Expressions

Evaluate $x^{2}+2 x$ for $x=3$.

$$
x^{2}+2 x
$$

$$
(3)^{2}+2(3)
$$

15
Simplify by using properties of exponents.

$$
\left(\frac{a b^{4}}{b^{7}}\right)^{2}=\frac{a^{2} b^{8}}{b^{14}}=\frac{a^{2}}{b^{6}}
$$

Simplify by combining like terms.

$$
3 x^{2}+2 x^{2}=5 x^{2}
$$

Scientific notation: Simplify $\frac{2.3 \times 10^{-6}}{4.6 \times 10^{-2}}$.

$$
\frac{2.3 \times 10^{-6}}{4.6 \times 10^{-2}}=0.5 \times 10^{-4}=5.0 \times 10^{-5}
$$

Section Overview

Functions

Why? Functions describe the relationship between a set of input values and a set of output values. They can be represented in several ways.

Mapping Diagram	
x	$f(x)$
-1	$\rightarrow-2$
0	$\rightarrow-1$
1	$\rightarrow 0$
2	1
3 -	$\longrightarrow 2$

Table

x	-1	0	1	2	3
$f(x)$	-2	-1	0	1	2

Ordered Pairs

$(-1,-2)(0,-1),(1,0),(2,1),(3,2)$

Function Notation

$f(x)=x-1$

Graph

Functions associate each element in a domain with exactly one element in a range.

Transformations and Parent Functions

Lessons 1-8, 1-9
Why? Identifying parent functions and their transformations helps students classify and make generalizations about functions.

The graphs of points or functions can be transformed in several ways.

Translation

Reflection

Stretch

Compression

Functions can be grouped based on their parent functions. Some parent functions follow:

Linear Function

$$
f(x)=x
$$

Quadratic Function

$$
f(x)=x^{2}
$$

Cubic Function

$f(x)=x^{3}$

Square-Root Function

$$
f(x)=\sqrt{x}
$$

