

Example :

Does fidgeting keep you slim?

NEA change (cal):	-94	-57	-29	135	143	151	245	355
Fat gain (kg) :	4.2	3.0	3.7	2.7	3.2	3.6	2.4	1.3
NEA change (cal):	392	473	486	535	571	580	620	690
Fat gain (kg):	3.8	1.7	1.6	2.2	1.0	0.4	2.3	1.1

Example :

Does fidgeting keep you slim?

> Two-Variable Statistics
> $\overline{\mathrm{x}}=324.75 ; \overline{\mathrm{y}}=2.3875$
> $\Sigma \mathrm{x}=5196 ; \mathrm{x}^{2}=2.68321 \mathrm{e} 6$
> $\mathrm{Sx}=257.657$
> $\sigma \mathrm{x}-219.175$
> $\mathrm{n}=15$.
> $\Sigma \mathrm{y}=38.2 ; \Sigma \mathrm{y}^{2}=110.66$
> $\mathrm{Sy}=1.13893$
> $u \mathrm{y}=1.10277$
> $\Sigma \mathrm{xy}=8978.4$
> $\min \mathrm{X}=-94 ; \max \mathrm{X}=690$.
> $\min \mathrm{Y}=.4 ; \max \mathrm{Y}=4.2$

Example :
Does fidgeting keep you slim?

Liear Regression (a+bx) regE $Q(x)=3.50512+-.003441 \mathrm{x}$
$a=3.50512$
$\mathrm{b}=-.003441$
$\mathrm{r}=. .778556$
fat gain $b_{0} \quad b_{1}$ (NEA change)

Equation of the Least-Squares Regression Line

$$
\hat{y}=b_{0}+b_{1} x
$$

Slope

$$
b_{1}=r \frac{s_{y}}{s_{x}}
$$

Intercept

$$
b_{0}=\bar{y}-b_{1} \bar{x}
$$

How to:

First we calculate the slope of the line, $\quad b_{\mathbf{1}}=r \frac{s_{y}}{s_{x}}$
\boldsymbol{b}, from statistics we already know:
\boldsymbol{r} is the correlation
$\mathbf{S}_{\mathbf{y}}$ is the standard deviation of the response variable y
$\mathbf{s}_{\mathbf{x}}$ is the standard deviation of the explanatory variable x
Once we know \boldsymbol{b}_{1}, the slope, we can calculate \boldsymbol{b}_{0}, the \boldsymbol{y}-intercept:
$b_{0}=\bar{y}-b_{1} \bar{x} \quad$ where \bar{x} and \bar{y} are the sample where \bar{x} and y are the sample
means of the x and y variables

This means that we don't have to calculate a lot of squared distances to find the least-squares regression line for a data set. We can instead rely on the equation.

But typically, we use a 2-var stats calculator or a stats software.

Formulas for LSRL

- The LSRL is linear, so it follows the form $\boldsymbol{y}=\boldsymbol{m} \boldsymbol{x}+\boldsymbol{b}$
- In Statistics, we say $\hat{y}=b_{0}+b_{1} x$
- In this context, \hat{y} is called the predicted value
- There are specific formulas for the slope and intercept of the LSRL.
- To use these formulas, we need $\boldsymbol{b}_{\mathbf{1}}, \boldsymbol{S}_{x}, \boldsymbol{b}_{0}$, and $\boldsymbol{S}_{\boldsymbol{y}}$, plus the correlation constant \boldsymbol{r}.
- We also need a clear indication of which is the explanatory variable; that will be the \boldsymbol{x} data.
- Once you have calculated the 5 items above, here are the formulas:
Slope: $b_{0}=r \frac{S_{y}}{S_{x}} \quad$ Intercept: $b_{0}=\bar{Y}-b_{1} \bar{X}$

The distinction between explanatory and response variables is crucial in regression. If you exchange \boldsymbol{y} for \boldsymbol{x} in calculating the regression line, you will get the wrong line.
Regression examines the distance of all points from the line in the y direction only.

Data from the Hubble telescope about galaxies moving away from Earth:

These two lines are the two regression lines calculated either correctly ($\mathrm{x}=$ distance, $\mathrm{y}=$ velocity, solid line) or incorrectly ($\mathrm{x}=$ velocity, $\mathrm{y}=$ distance, dotted line).

Example: Classifying Fossils

Femur:	38	56	59	64	74
Humerus:	41	63	70	72	84

a) Make a scatterplot. Do you think that all five specimens come from the same species?
b) Find the correlation r step-by-step. That is, find the mean and standard deviation of the femur lengths and of the humerus lengths. Then find the five standardized values for each variable and use the formula for r.

\section*{Finding a "Best-fit" Line
 - Consider the archaeopteryx data from problem 3.13
 | Femur length: | 38 | 56 | 59 | 64 | 74 |
| :--- | :--- | :--- | :--- | :--- | :--- | Humerus length: $41 \quad 63 \quad 70 \quad 72 \quad 84$}

- Draw axes on graph paper with scales appropriate to these data and plot the points
- Assume (unrealistically) that femur length is the explanatory variable and that humerus length is the response variable
- Use a straightedge to draw a straight line that appears to fit the data as well as possible
- Using two points on your line (not necessarily data points) find the equation of the line
- Write the equation in terms of femur and humerus, not x and y

Making Predictions from the Line

- My best-fit line had this equation:

humerus length $=1.197$ (femur) $\mathbf{- 3 . 6 6 0}$

- Note that I have rounded to the nearest tenth, which is one more decimal place than the source data.
- Note also that my equation is IN CONTEXT. I don't use " x " or " y ".
- Based on my equation, how long would you expect the humerus to be of a specimen with a femur length of 47 cm ?
humerus length $=1.197 \times \mathbf{4 7} \mathbf{- 3 . 6 6 0}=\mathbf{5 2 . 5 9 9} \mathbf{~ c m}$
- Based on YOUR equation, how long should the humerus be?
- Caution: Predictions are only valid for \boldsymbol{x} values WITHIN the range of actual \boldsymbol{x} data

BEWARE !!!

Not all calculators and software use the same convention:

$$
\hat{y}=a+b x
$$

Some use instead:

$$
\hat{y}=a x+b
$$

Make sure you know what
 Texas Instruments TI-83 Plus YOUR calculator gives you for a and b before you answer homework or exam questions.

The Meaning of Slope

- In a simple algebraic function like $\boldsymbol{y}=2 \boldsymbol{x}+17$, what is the real meaning of the slope?
$*$ For every increase in x of 1 unit, y increases by 2
- In the context of the archaeopteryx problem, what is the meaning of the slope?
* For every increase of femur length by 1 cm the predicted humerus length increases by 1.197 cm .
- In the function $y=2 x+17$, what is the meaning of the y intercept?
$*$ It is the value y takes on when $x=0$
- In the context of the archaeopteryx problem, what is the meaning of the intercept?
* When the femur length $=0$, the humerus length $=\mathbf{- 3 . 6 6 5}$ (huh!)
- What's wrong with that answer?
* It makes no sense because the femur value is outside of the range of the data used to get the LSRL equation.

