

- the squares.
 - That equation is called the *Least Squares Regression* Line and is abbreviated LSRL

		T
L1	L2	1 wo-variable Statistics
94	4.2	x = 324.75; y = 2.3875
-57	3	
-29	3.7	$\Sigma x = 5196$; $\Sigma x^{-} = 2.68321e6$
135	2.7	$S_x = 257.657$
143	3.2	210.175
151	3.6	$\sigma x = 249.475$
245	2.4	n = 16.
355	1.3	,
392	3.8	$\Sigma y = 38.2; \Sigma y'' = 110.66$
473	1.7	Sv = 1 13893
486	1.6	
535	2.2	oy = 1.10277
571	1	$\Sigma xy = 8978.4$
580	0.4	1 TZ 04 TZ 000
620	2.3	mmX = -94.; maxX = 690.
690	1.1	minY = 4; $maxY = 4.2$

	Finding a "I	Best	t -fit"	Lin	e				
A LAN	• Consider the archaeopteryx data from problem 3.13								
1000	Femur length:	38	56	59	64	74			
	Humerus length:	41	63	70	72	84			
•	• Draw axes on graph paper with scales appropriate to these data and plot the points								
	 Assume (unrealistically) that femur length is the explanatory variable and that humerus length is the response variable 								
	• Use a straightedge to draw a straight line that appears to fit the data as well as possible								

• Using two points on your line (not necessarily data points), find the equation of the line

• Write the equation in terms of femur and humerus, not x and y

Making Predictions from the Line • My best-fit line had this equation: humerus length = 1.197 (femur) – 3.660· Note that I have rounded to the nearest tenth, which is one

- more decimal place than the source data.
- · Note also that my equation is IN CONTEXT. I don't use "x" or "y".
- Based on my equation, how long would you expect the humerus to be of a specimen with a femur length of 47 cm?
 - humerus length = 1.197 î 47 3.660 = 52.599 cm
- Based on YOUR equation, how long should the humerus be?
- *Caution:* Predictions are only valid for x values WITHIN the range of actual x data

