# **Chapter 14**

### From Randomness to Probability

 Read and study chapter 14.
 Use the internet and do a research on "permutation" and "combination." You are expected to do permutation and combination problems
 Chapter 14 Test on Monday



# Chapter 14

From Randomness to Probability

### Dealing with Random Phenomena

- A random phenomenon is a situation in which we know what outcomes could happen, but we don't know which particular outcome did or will happen.
- In general, each occasion upon which we observe a random phenomenon is called a **trial**.
- At each trial, we note the value of the random phenomenon, and call it an **outcome**.
- When we combine outcomes, the resulting combination is an event.
- The collection of *all possible outcomes* is called the **sample space**.

### The Law of Large Numbers

First a definition . . .

- When thinking about what happens with combinations of outcomes, things are simplified if the individual trials are independent.
  - Roughly speaking, this means that the outcome of one trial doesn't influence or change the outcome of another.
  - For example, coin flips are independent.

The Law of Large Numbers (cont.)

- The Law of Large Numbers (LLN) says that the long-run relative frequency of repeated independent events gets closer and closer to a single value.
- We call the single value the **probability** of the event.
- Because this definition is based on *repeatedly* observing the event's outcome, this definition of probability is often called empirical probability.

Slide 14 - 6

### The Nonexistent Law of Averages

- The LLN says nothing about short-run behavior.
- Relative frequencies even out only in the long run, and this long run is really long (infinitely long, in fact).

Slide 14

### **Modeling Probability**

- When probability was first studied, a group of French mathematicians looked at games of chance in which all the possible outcomes were *equally likely*. They developed mathematical models of theoretical probability.
  - It's equally likely to get any one of six outcomes from the roll of a fair die.
  - It's equally likely to get heads or tails from the toss of a fair coin.
- However, keep in mind that events are *not* always equally likely.
  - A skilled basketball player has a better than 50-50 chance of making a free throw.

Slide 14 - 8

### Modeling Probability (cont.)

 The probability of an event is the number of outcomes in the event divided by the total number of possible outcomes.

 $P(\mathbf{A}) = \frac{\text{\# of outcomes in } \mathbf{A}}{\text{\# of possible outcomes}}$ 

### **Personal Probability**

- In everyday speech, when we express a degree of uncertainty <u>without basing it on long-run</u> <u>relative frequencies or mathematical models</u>, we are stating subjective or personal probabilities.
- Personal probabilities don't display the kind of consistency that we will need probabilities to have, so we'll stick with formally defined probabilities.



# The First Three Rules of Working with Probability (cont.)

• The most common kind of picture to make is called a Venn diagram.



We will see Venn diagrams in practice shortly...

Slide 14 - 12

### **Formal Probability**

- 1. Two requirements for a probability:
  - A probability is a number between 0 and 1.
  - For any event A,  $0 \le P(A) \le 1$ .

### Formal Probability (cont.)

### 2. Probability Assignment Rule:

- The probability of the set of all possible outcomes of a trial must be 1.
- P(S) = 1 (S represents the set of all possible outcomes.)

The sample space S.

Slide 14 - 14

# Formal Probability (cont.) 3. Complement Rule: The set of outcomes that are *not* in the event A is called the complement of A, denoted A<sup>c</sup>. The probability of an event occurring is 1 minus the probability that it doesn't occur: P(A) = 1 - P(A<sup>c</sup>)

The set A and its complement



### Formal Probability (cont.)

### 4. Addition Rule (cont.):

- For two disjoint events A and B, the probability that one *or* the other occurs is the sum of the probabilities of the two events.
- $P(A \cup B) = P(A) + P(B)$ , provided that A and B are disjoint.

Slide 14 - 17

Slide 14 - 1

### Formal Probability (cont.)

### 5. Multiplication Rule:

- For two independent events A and B, the probability that both A and B occur is the product of the probabilities of the two events.
- $P(A \cap B) = P(A) \times P(B)$ , provided that A and B are independent.

### Formal Probability (cont.)

### 5. Multiplication Rule (cont.):

Two independent events A and B are not disjoint, provided the two events have probabilities greater than zero:



Slide 14

### Formal Probability (cont.)

### 5. Multiplication Rule:

- Many Statistics methods require an Independence Assumption, but assuming independence doesn't make it true.
- Always *Think* about whether that assumption is reasonable before using the Multiplication Rule.

Slide 14 - 2

### **Formal Probability - Notation**

Notation alert:

- In this text we use the notation  $P(\mathbf{A} \cup \mathbf{B})$  and  $P(\mathbf{A} \cap \mathbf{B})$ .
- In other situations, you might see the following:
  - P(A or B) instead of P(A \cup B)
  - $P(\mathbf{A} \text{ and } \mathbf{B})$  instead of  $P(\mathbf{A} \cap \mathbf{B})$

### Complements

- Suppose the probability of event A is 0.4
- What is the probability of event A NOT occurring?
- 0.6
- The set of outcomes that represent event A NOT occurring is called the complement of event A, often denoted as A<sup>c</sup>
- The probability of an event and the probability of the complement of that event must add up to 1, so that we can say

P(A) = 1 - P(A<sup>c</sup>)

 Sometimes it is easier to find the probability of A<sup>c</sup> than it is to find the probability of A, in which case to find P(A) just subtract P(A<sup>c</sup>) from 1!

### Laws of Probability

- Suppose the probability that a randomly selected student is a sophomore (A) is 0.20 and the probability that he or she is a junior (B) is 0.30. What is the probability that the student is either a sophomore OR a junior, written  $P(\mathbf{A} \cup \mathbf{B})$
- 50%

 If two events have no outcomes in common (no overlap / both can't be true at once) we say the events are DISJOINT (or MUTUALLY EXCLUSIVE)

For disjoint events A and B, you can find the probability of A OR B, written  $P(\mathbf{A} \cup \mathbf{B})$ , by ADDING the separate probabilities

Slide 14 - 23

### 2<sup>nd</sup> example

- Suppose the probability of owning an MP3 player is 0.50. and the probability of owning a computer is 0.90.
- Is the probability of owning an MP3 player OR a computer equal to 1.40?
- No here the events are NOT disjoint, you CAN own both.. So it is not appropriate to add the separate probabilities together

### 2<sup>nd</sup> law of probability

- Suppose that when you drive to school, the probability that a certain traffic light is red when you reach the intersection is 0.35.
- What is the probability that you will hit the light when it is red on two consecutive days?
- 0.35 \* 0.35 = 0.1225 or 12.25%
- For two INDEPENDENT events A and B, the probability that BOTH A AND B occur is the product of the probabilities of the two events
- We write P(A ∩ B). = P(A) \* P(B)
- This rule ONLY applies for independent events; we will deal with dependent events in the next chapter!

Slide 14 - 25

### Application of complement

- Suppose I want to find the probability that I will hit the traffic light when it is red AT LEAST once this week (that is, at least once in 5 drives to school).
- If you think about it, I can either hit the red light NOT AT ALL or I have to hit it AT LEAST ONCE
- In other words, NOT AT ALL and AT LEAST ONCE are complementary events; one of them must be true when I drive to school 5 times
- So P(AT LEAST ONCE) = 1 P(NOT AT ALL)
- It is much easier to calculate the probability of AT LEAST ONCE this way
- P(NOT AT ALL) = (0.65)(0.65)(0.65)(0.65)(0.65) = (0.65)<sup>5</sup> = 0.116
- P(AT LEAST ONCE) = 1 -0.116 = 0.884
- So there is an 88.4% probability that I will hit the red light at least once this week! Slide 14 - 26

### **Mixed example**

- In 2001, The manufacturers of M & Ms decided to add a new color of M & M, either purple, pink, or teal. They surveyed kids around the world regarding which color should be added. In Japan, 38% voted pink, 36% voted teal, and 16% voted purple.
- What's the probability a randomly selected respondent preferred either pink or teal?
- If we pick two respondents at random, what is the probability that they BOTH selected purple?
- If we pick three respondents at random, what is the probability that AT LEAST one preferred purple?

Slide 14 - 27

Slide 14

# What's the probability a randomly selected respondent preferred either pink or teal?

■ P(pink ∪ teal) = P(pink) + P(teal)

The probability that a respondent preferred pink or teal is 74%

# If we pick two respondents at random, what is the probability that they BOTH selected purple?

- P( both purple)
- P(1<sup>st</sup> selected purple AND 2<sup>nd</sup> selected purple)
- Are these events independent?
- Yes!
- So multiply: (0.16)(0.16) = (0.16)<sup>2</sup> = 0.0256
- The probability both respondents selected purple is 2.56%

# If we pick three respondents at random, what is the probability that AT LEAST one preferred purple?

- P(at least one preferred purple) is:
- 1 P(none preferred purple)
- = 1 P(1<sup>st</sup> didn't prefer purple AND 2<sup>nd</sup> didn't prefer purple AND 3<sup>rd</sup> didn't prefer purple)
- $= 1 (0.84)(0.84)(0.84) = 1 (0.84)^3 = 0.407$
- There is a 40.7% probability that at least one of the three respondents preferred purple.

5

### Putting the Rules to Work

- In most situations where we want to find a probability, we'll use the rules in combination.
- A good thing to remember is that it can be easier to work with the *complement* of the event we're really interested in.

### What Can Go Wrong?

- Beware of probabilities that don't add up to 1.
  - To be a legitimate probability distribution, the sum of the probabilities for all possible outcomes must total 1.
- Don't add probabilities of events if they're not disjoint.
  - Events must be disjoint to use the Addition Rule.

Slide 14 - 32

### What Can Go Wrong? (cont.)

- Don't multiply probabilities of events if they're not independent.
  - The multiplication of probabilities of events that are not independent is one of the most common errors people make in dealing with probabilities.
- Don't confuse disjoint and independent—disjoint events can't be independent.

Slide 14 - 33

Slide 14 - 3

### What have we learned?

- Probability is based on long-run relative frequencies.
- The Law of Large Numbers speaks only of longrun behavior.
  - Watch out for misinterpreting the LLN.

### What have we learned? (cont.)

- There are some basic rules for combining probabilities of outcomes to find probabilities of more complex events. We have the:
  - Probability Assignment Rule
  - Complement Rule
  - Addition Rule for disjoint events
  - Multiplication Rule for independent events

Slide 14 - 35