

Permutation

- Consider the possible arrangements of the letters A, B, and C.
- The possible arrangements are: $A B C$, $A C B, B A C, B C A, C A B, C B A$.
- If the order of the arrangement is important then we say that each arrangement is a permutation of the three letters. Thus there are six permutations of the three letters.

Permutation

- An arrangement of \boldsymbol{n} distinct objects in a specific order is called a permutation of the objects.
- Note: To determine the number of possibilities mathematically, one can use the multiplication rule to get: $3 \times 2 \times 1=6$ permutations.

Permutation

- How many different ways can a chairperson and an assistant chairperson be selected for a research project if there are seven scientists available?
- Solution:
$={ }_{7} P_{2}=7!/(7-2)!=7!/ 5!=42$.

Permutation

Permutation

- Permutation Rule : The arrangement of n objects in a specific order using r objects at a time is called a permutation of n objects taken r objects at a time. It is written as ${ }_{n} P_{r}$ and the formula is given by

$$
{ }_{n} P_{r}=\frac{n!}{(n-r)!}
$$

Combination

- Consider the possible arrangements of the letters A, B, and C.
- The possible arrangements are: $A B C$, $A C B, B A C, B C A, C A B, C B A$.
- If the order of the arrangement is NOT important then we say that each arrangement is the same. We say there is one combination of the three letters.

Combination

- How many combinations of four objects are there taken two at a time?
- Solution: Number of combinations: ${ }_{4} C_{2}=4!/[(4-2)!2!]=4!/[2!2!]=6$.

Combination

- In a club there are 7 women and 5 men. A committee of 3 women and 2 men is to be chosen. How many different possibilities are there?
- Solution: Number of possibilities: (number of ways of selecting 3 women from 7) \times (number of ways of selecting 2 men from 5) $={ }_{7} C_{3} \times{ }_{5} C_{2}=(35)(10)=$ 350.

Combination

- Combination Rule : The number of combinations of of r objects from n objects is denoted by ${ }_{n} C_{r}$ and the formula is given by

$$
{ }_{n} C_{r}=\frac{n!}{(n-r)!r!}
$$

Combination

- In order to survey the opinions of customers at local malls, a researcher decides to select 5 malls from a total of 12 malls in a specific geographic area. How many different ways can the selection be made?
- Solution: Number of combinations: ${ }_{12} C_{5}=12!/[(12-5)!5!]=12!/[7!5!]=$ 792.

Combination

- A committee of 5 people must be selected from 5 men and 8 women. How many ways can the selection be made if there are at least 3 women on the committee?

Combination
- Solution: The committee can consist of
3 women and 2 men, or 4 women and 1
man, or 5 women. To find the different
possibilites, find each separately and
then add them:
${ }_{8} C_{3} \times{ }_{5} C_{2}+{ }_{8} C_{4} \times{ }_{5} C_{1}+{ }_{8} C_{5} \times{ }_{5} C_{0}=$
$(56)(10)+(70)(5)+(56)(1)=966$.

Conditional Probability

1. Event probability given that another event occurred
2. Revise original sample space to account for new information

- Eliminates certain outcomes

3. $P(A \mid B)=P(A$ and $B)$
$P(B)$

Computing Conditional Probability

Conditional Event: Draw 1 Card. Note Kind \& Color

Computing Conditional Probability

The Probability of the Event:
Event A given that Event B has occurred

$$
\mathbf{P}(\mathbf{A} \mid \mathbf{B})=\frac{P(A \text { and } \boldsymbol{B})}{P(\boldsymbol{B})}
$$

e.g.
$\mathrm{P}($ Red Card given that it is an Ace $)=\frac{2 \text { Red Aces }}{4 \text { Aces }} \frac{1}{2}$

Conditional Probability Using Venn Diagram

Black 'happens': Eliminates all other outcomes

