Bivariate Relationships

- Two quantitative variables
- Scatter plot
- Side by side stem and leaf plots
- Two qualitative variables
- Tables
- Bar charts
- One quantitative and one qualitative variable
- Side by side box plots
- Bar chart

Response and explanatory variables

- Response variable - the variable which we intend to model.
- we intend to explain through statistical modeling
- Explanatory variable - the variable or variables which may be used to model the response variable
- values may be related to the response variable

Scatterplots

- The association between two quantitative variables can be shown on one graph by plotting i data points as ordered pairs on axes. Such a graph is called a scatterplot.
- If it seems that one variable is a response to the other, then plot that variable on the y-axis. It is called the response variable.
- The x-axis then has the explanatory variable.

STARTER Ch. 3: SAT Activity

- Write your most recent SAT math and verbal scores on a slip of paper and drop in the box as I pass through the room.
- NO NAMES PLEASE!!
- Clearly state which is math, which is verbal.

AGENDA

- HW Chapter 3, 1-35 odds
- BRING Graph papers, colored pencils

STARTER Ch. 3: SAT Activity

- Write your most recent SAT math and verbal scores on a slip of paper and drop in the box as I pass through the room.
- NO NAMES PLEASE!!
- Clearly state which is math, which is english.
- Using a graph paper, put math on the horizontal axis and english on the vertical.
- Scales should run from 200 to 800
- Write a description of the association between math and english scores.

Objectives

- Be able to recognize when a variable is categorical and choose an appropriate display for it.
- Understand how to examine the association between categorical variables by comparing conditional and marginal percentages.
- Be able to summarize the distribution of a categorical variable with a frequency table.
- Be able to construct graphs that appropriately describe data.
- Calculate and interpret numerical summaries of a data set.
- Combine numerical methods with graphical methods to analyze a data set.

Displaying Qualitative Data

"Sometimes you can see a lot just by looking."

Yogi Berra Hall of Fame Catcher, NY Yankees

STARTER: Read Case Ch. 3, p. 20
Write a brief summary (use W's)

The Three Rules of Data Analysis

The three rules of data analysis won't be difficult to remember:

1. Make a picture - things may be revealed that are not obvious in the raw data. These will be things to think about.
2. Make a picture - important features of and patterns in the data will show up. You may also see things that you did not expect.
3. Make a picture - the best way to tell others about your data is with a well-chosen picture.

Launched: 31st May 1911
Builders: Harland and Wolff, Belfast
Port of Registry: Liverpool
Passengers Lost: 818 (62\%)
Crew Lost: 684 (77\%)
Total Lost:
1,502 (68\%)

Contingency Tables

A contingency table is used to organize multiple variables.

Ex: Contingency Table of Titanic passengers

Ways to present categorical data

- You've seen data represented in newspapers, magazines, online. How do you normally see it?
> Tables (frequency tables)
> Bar charts
> Pie charts
> Line graphs
> Contingency tables

Frequency Tables: Making Piles

- We can "pile" the data by counting the number of data values in each category of interest.
- We can organize these counts into a frequency table, which records the totals and the category names.

Class	Count
First	325
Second	285
Third	706
Crew	885

Relative Frequency Tables

- Percentages (proportions) instead of counts.

Class	Count		$\%$
First	325	$\mathbf{3 2 5} / \mathbf{2 , 2 0 1}$	14.77
Second	285	$\mathbf{2 8 . 5} / \mathbf{2 . 2 0 1}$	12.95
Third	706	$\mathbf{7 0 6} / \mathbf{2 , 2 0 1}$	32.08
Crew	885	$\mathbf{8 8 5} / \mathbf{2 . 2 0 1}$	40.21

TOTAL 2,201

The "Area Principle"

The Area Principle says that the area occupied by a part of the graph should correspond to the magnitude of the value it represents.

Bar Charts

Bar Charts

- A relative frequency bar chart displays the relative proportion of counts for each category.

Pie Charts

When you are interested in parts of the whole, a pie chart might be your display of choice.

Some questions...

PET ACTIVITY: Please put a single tally mark on the board to classify yourself by gender and type of pet you own.

What percentage of our class is male?
What percentage of our class has a dog only?

What percentage of our class does NOT have a cat or dog?

Some questions...

1) What percentage of our class is male?
2) What percentage of our class has a dog only?
3) What percentage of our class does NOT have a cat or dog?
4) What percentage of the males have a cat only?
5) What percentage of dog (only) owners are female?
6) What percentage of our class are female cat (only) owners?
7) If you have both a dog and a cat, what is the percent chance that you will be male?

More Questions

What percentage of the males have a cat only?

What percentage of dog (only) owners are female?

What percentage of our class are female cat (only) owners?

If you have both a dog and a cat, what is the percent chance that you will be male?

Marginal Distributions

A distribution of one of the variables in a contingency table is its marginal distribution.

Example:
a) For our data, what is the marginal distribution of gender?
b) For our data, what is the marginal distribution of pets?

Conditional Distributions (cont.)

- The following is the conditional distribution of ticket Class, conditional on having perished:

Class					
	First	Second	Third	Crew	Total
Dead	$\mathbf{1 2 2}$	$\mathbf{1 6 7}$	528	673	$\mathbf{1 4 9 0}$
	8.2%	11.2%	35.4%	45.2%	100%

Conditional Distributions (cont.)

- We see that the distribution of Class for the survivors is different from that of the nonsurvivors.
- This leads us to believe that Class and Survival are associated, that they are not independent.
- The variables would be considered independent when the distribution of one variable in a contingency table is the same for all categories of the other variable.
${ }^{33}$

Conditional Distributions

At times, we may want to limit our "Who" and look at only a specific variable value for that "Who" only

A distribution of one variable for only those individuals satisfying some condition of the other variable is a conditional distribution.

Conditional Distributions

- A conditional distribution shows the distribution of one variable for just the individuals who satisfy some condition on another variable.
- The following is the conditional distribution of ticket Class, conditional on having survived:

Class					
	First	Second	Third	Crew	Total
Alive	$\mathbf{2 0 3}$	$\mathbf{1 1 8}$	$\mathbf{1 7 8}$	$\mathbf{2 1 2}$	$\mathbf{7 1 1}$
	28.6%	16.6%	25.0%	29.8%	100%

Conditional Distributions

A distribution of one variable for only those individuals satisfying some condition of the other variable is a conditional distribution.
a) What is the conditional distribution of pets for males?
b) What is the conditional distribution of pets for females?

Conditional Distribution

How do these differ:

- Conditional Distribution of pet for each gender
- Conditional Distribution of gender for each pet

Independence

In a contingency table, when the distribution of one variable is the same for all categories of another, we say the variables are independent.

* Look at the conditional distributions of the table
* If the distributions are similar, we can say the variables are independent.
* If the distributions are different, we can say the variables are dependent.

Segmented Bar Charts

An alternative to a Pie Chart, a Segmented Bar Chart divides up bars instead of circles

Each bar is treated as a "whole" (100\%) and is divided proportionally into segments corresponding to percentages in each group.

Segmented Bar Charts are great visual displays for seeing if distributions are alike or different in order to decide on independence.

Comparing the Graphs

A contingency table allows us to look at two categorical variables together.

A contingency table allows us to look at two categorical variables together.

- Each cell of the table gives the count for a combination of values of the two values.
- For example, the second cell in the crew column tells us that 673 crew members died when the Titanic sunk.

E立vin		Class				
		First	Second	Third	Crew	Total
	Alive	203	118	178	212	711
	Dead	122	167	528	673)	1490
	Total	325	285	706	885	2201

- A conditional distribution shows the distribution of one variable for just the individuals who satisfy some condition on another variable.

Class						
	First	Second	Third	Crew	Total	
	Alive	203	118	178	212	711
	28.6%	16.6%	25.0%	29.8%	100%	
	First	Second	Third	Crew	Total	
	Dead	122	167	528	673	1490
	8.2%	11.2%	35.4%	45.2%	100%	

We see that the distribution of Class for the survivors is different from that of the non-survivors..
so class and survival are associated (they are dependent).

Class					
	First	Second	Third	Crew	Total
Alive	203	118	178	212	711
	Dead	122	167	528	673
	$\mathbf{1 4 9 0}$				
Total	325	285	706	$\mathbf{8 8 5}$	2201

- What percent of the people on the Titanic died?

$$
1490 / 2201 \text { = 67.7\% }
$$

- What percent of the people were surviving crew?
$212 / 2201=9.6 \%$
- *What percent of the survivors were First class? 203/711 = 28.6\%
- *What percent of First class survived? 203/325 = 62.5\%

Conditional Distributions

- The conditional distributions tell us that there is a difference in class for those who survived and those who perished.
- This is better shown with pie charts of the two distributions:
- Pie charts
of the two distributions:

What Can Go Wrong?

- Don't violate the area principle.
- While some people might like the pie chart on the left better, it is harder to compare fractions of the whole, which a well-done pie chart does.

What Can Go Wrong?

This plot of the percentage of high-school students who engage in specified dangerous behaviors has a problem. Can you see it?

What Can Go Wrong?

These percentages sound similar but are different:

- The percentage of the passengers who were both in first class and survived. This would be $203 / 2201$, or 9.4%
- The percentage of the first-class passengers who survived. This would be $203 / 325$, or 62.5%.
- The percentage of the survivors who were in first class. This is 203/711, or 28.6%.

\|		Class					Pay attention to the WHO implicitly defined by the phrase. Often, there is a restriction to a smaller group.
		First	Second	Third	Crew	Total	
	Alive	203	118	178	212	711	
	Dead	122	167	528	673	1490	
	Total	325	285	706	885	2201	

What Can Go Wrong?

- Don't use unfair or silly averages ~

What Can Go Wrong?

- Don't forget to look at the variables separately .

When you make a contingency able or display conditional distribution, be sure you also examine the marginal distributions. It is important to know how many cases are in each category.

What Have We Learned?

- We can summarize categorical data by counting the number of cases in each category (expressing these as counts or percents).
- We can display the distribution in a bar chart or pie chart.
- And, we can examine two-way tables called contingency tables, examining marginal and/or conditional distributions of the variables.
we need data for next time!
(average hair length)

CW Ch. 3

2002B \#4

Each person in a random sample of 1,026 adults in the United States was asked the following question.
-Based on what you know about the Social Security system today, what would you like Congress and the President to do during this next year?"
The response choices and the percenlages selecting them are shown below.

```
Completely overhaul the system
Make some major changes
Make some minor adjustments
Leave the system the way it is nos
No opinion
\(19 \%\)
\(39 \%\)
Leave the system the way it is now \(\quad 11 \%\)
No opinion
```

- Is this data categorical or quantitative?
- Sketch two graphs of this data. Make one a bar chart and the other a pie chart. What are pros/cons of each graph?

