

Objectives

- Given a two-way table of counts for two categorical variables:
* Find the marginal distributions of the variables
* Find a conditional distribution of the variables
* Display the distributions as bar charts
- In this lesson, we will study the relationship between two categorical variables using
* Counts
* Marginal percents

Objectives

- Relationships between categorical variables
- Simpson's paradox

Two-way tables

An experiment has a two-way, or block, design if two categorical factors are studied with several levels of each factor.

Two-way tables organize data about two categorical variables obtained from a two-way, or block, design. (There are now two ways to group the data.)

Two-Way Tables

- Data are cross-tabulated to form a two-way table with a row variable and column variable
- The count of observations falling into each combination of categories is crosstabulated into each table cell
- Counts are totaled to create marginal totals

Two types of categorical variables:

1. Those that are inherently categorical. Example: eye color, gender, city.
2. Those that are obtained by grouping quantitative variables into classes.
Example: age groups 25-34, 35-54, 55 and over.

The marginal distributions can then be displayed on separate bar graphs, typically expressed as percents instead of raw counts. Each graph represents only one of the two variables, completely ignoring the second one.

Relationships between categorical variables

The cells of a two-way table represent the intersection of a given level of one categorical factor with a given level of the other categorical factor.

The marginal distributions summarize each categorical variable independently. But the two-way table actually describes the relationship between both categorical variables.

Because counts can be misleading (for instance, one level of one factor might be much less represented than the other levels), we prefer to calculate percents or proportions for the corresponding cells. These make up the conditional distributions.

Marginal distributions

We can look at each categorical variable in a two-way table separately by studying the row totals and the column totals. They represent the marginal distributions, expressed in counts or percentages (they are written as if in a margin).

Conditional distributions

The counts or percents within the table represent the conditional distributions. Comparing the conditional distributions allows us to describe the "relationship" between both categorical variables.

Marginal Percents

- It is more informative to display counts as percents
- Marginal percents
marginal percent $=\frac{\text { marginal total }}{\text { table total }} \times 100 \%$
- Use a bar graph to display marginal percents (optional)

Row Conditional Percent Column Conditional Percent

$$
\text { column percent for cell }=\frac{\text { cell count }}{\text { column total }} \times 100 \%
$$

$$
\text { row percent for cell }=\frac{\text { cell count }}{\text { row total }} \times 100 \%
$$

To know which one to use, ask
"What comparison is most relevant?"

Simpson's Paradox

- Simpson's paradox occurs when an association between two variables is reversed upon observing a third variable.
- Simpson's paradox \equiv a lurking variable creates a reversal in the direction of the association
- To uncover Simpson's Paradox, divide data into subgroups based on the lurking

Simpson's Paradox

Beware of lurking variables

An association or comparison that holds for all of several groups can reverse direction when the data are combined to form a single group. This reversal is called Simpson's paradox.

Example: Hospital death rates			Hospita	Hospital B	On the surface, Hospital B would seem to have a better record.
		Died	63	16	
		Survived	2037	784	
		Total	2100	800	
		\% Surv.	97.0\%	98.0\%	
But once patient condition is taken into account, we see that, in fact, Hospital A has a better record for b	Patients in good condition			Patients in poor condition	
		Hospital A Hospital B			Hospital A Hospital B
	Died	6594	8	Died	$57 \quad 8$
	Survived		592	Survived	$1443 \quad 192$
	Total		600	Total	$1500 \quad 200$
	\% surv.	99.0\%	98.7\%	\% surv.	96.2\% 96.0\%
	patient	conditions (go	ood and po		
Here, patient condition was the lurking variable.					

Discrimination? (Simpson's Paradox)

- Or is there a lurking variable that explains the association?
- To evaluate this, split applications according to the lurking variable "School applied to"
- Business School (240 applicants)
- Art School (320 applicants)

198 of 360 (55\%) of men accepted 88 of $200(44 \%)$ of women accepted
Is this discrimination?

Discrimination? (Simpson's Paradox)

Consider college acceptance rates by sex.

	Accepted		Not
accepted	Total		
	198	162	360
Men	198		
Women	88	112	200
	286	274	560

Discrimination? (Simpson's Paradox)

- Within each school, a higher percentage of women were accepted than men. (There was not any discrimination against women.)
- This is an example of Simpson's Paradox.
- When the lurking variable (School applied to) was ignored, the data suggest discrimination against women.
- When the School applied to was considered, the association is reversed.

Discrimination? (Simpson's Paradox)

ART SCHOOL

	Accepted	Not accepted	Total
Men	180	60	240
Women	64	16	80
Total	244	76	320

180 of 240 men (75%) of men were accepted
64 of $80(80 \%)$ of women were accepted

Calculate the conditional distribution of political affiliation given attitude:

Affiliation	Attitude			
	favor	Indifferent	opposed	Total
Democrat	138	83	64	285
	$\mathbf{6 8 . 3 \%}$	$\mathbf{5 5 . 3}$	$\mathbf{4 3 . 2 \%}$	
Republican	64	67	84	215
	$\mathbf{3 1 . 7 \%}$	$\mathbf{4 4 . 7 \%}$	$\mathbf{5 6 . 7 \%}$	
Total	202	150	148	500

Given favor
democrat: 138 out of $202=68.3 \%$

Example

- A business school conducted a survey of companies in its state. A questionnaire was mailed to 200 small companies, 200 medium-sized companies, and 200 large companies. The rate of non-response is important in deciding how reliable survey results are.
- A 3×2 contingency table (but we use only percentages).
- Here are the data on response to this survey:

A. What was the overall percent of non-response? Answer: $\mathbf{(7 5 + 1 1 9 + 1 6 0) / 6 0 0 = 0 . 5 9 \rightarrow 5 9 \%}$
B. Calculate the percent of no response for each type of business. Describe how non-response is related to size of business.
Answer:
small: $75 / 200=0.375 \rightarrow$ 37.5\%
medium: $119 / 200=0.595 \rightarrow$ 59.5\%
large: $160 / 200=0.80 \rightarrow \mathbf{8 0 \%}$
The larger the business, the less likely it is to respond

D. Using the total number of responses as a base, compute the percent of responses that come from each of small, medium and large businesses
Answer:

Total $=\mathbf{2 4 6}$

	Response	No response	Total
Small	125	75	200
Medium	81	119	200
Large	40	160	200

E. In preparing an analysis of the survey results, do you think it would be reasonable to proceed as if the responses represented companies of each size equally?

Answer:
No. Over half of respondents were small businesses, while less than 17\% of responses came from large businesses.

