Chapter 4:
 Displaying and Summarizing Quantitative Data

Graphs for Quantitative Data: Histograms

- Histogram
- Breaks the range of values of a variable into classes and displays only the count or percent (relative frequency histogram) of the observations that fall into each class.

Graphs for Quantitative Data: Histograms

- Construction Method:
- Draw a horizontal axis that covers the full range of values for the variable
- Decide bar width (also called class width) so that 5 to 10 bars will cover the full range of data
- Set borders for bars, count frequencies, draw bars

Histogram

- Histograms allow a visual interpretation of quantitative (numerical) data by indicating the number of data points that lie within a range of values, called a class, width or a bin. The frequency of the data that falls in each class is depicted by the use of a bar.

Graphs for Quantitative Data: Histograms

- Histogram

- a "bar graph" in which the horizontal scale represents classes and the vertical scale represents frequencies
- Data points cannot be seen on the plot
- For large quantity of data points, group nearby values
- The bins and the counts in each bin give the distribution of the quantitative variable. Your calculator will give you a bin width, but you may need to make adjustments to get a better display. The heights of the bins are plotted. Shape, Center and Spread are important.

Histograms: Displaying the Distribution of Earthquake Magnitudes

- A relative frequency histogram displays the percentage of cases in each bin instead of the count.
- In this way, relative frequency histograms are faithful to the area principle.
- Here is a relative frequency histogram of earthquake magnitudes:

Relative Frequency and Cumulative Frequency

- Tells about the relative standing of an individual
- Construct a relative cumulative frequency histogram (ogive--pronounced "oh jive")
- Decide on class intervals and make a frequency table. Add three columns: relative frequency, cumulative frequency, and relative cumulative frequency.
- Complete the table.

$$
\text { Relative frequency }=\frac{\text { frequency }}{\text { total frequency }}
$$

Relative Cumulative Frequency
- Example
Class
Freq.
$40-44$ 2 Rel. Freq. Cum. Freq. Rel. Cum. Freq. $45-49$ 6 14.0% 2 4.7% $50-54$ 13 30.2% 21 48.8% $55-59$ 12 27.9% 33 76.7% $60-64$ 7 16.3% 40 93.0% $65-69$ 3 7.0% 43 100.0% TOTAL 43 100.0%
:---

Graphs for Quantitative Data

- Stemplot (stem-and-leaf plot)
- Organizes and groups data.
- Make each observation into a stem, consisting of all but the final (right-most) digit, and a leaf, the final digit. Stems may have as many digits as needed, but each leaf contains only a single digit.
- Write the stems in a vertical column with the smallest at the top, and draw a vertical line at the right of this column.
- Write each leaf in a row to the right of the stem, in increasing order out from the stem.
- Label to include magnitude or decimal point.

Graphs for Quantitative Data

- Stemplot (stem-and-leaf plot)
- For numbers with three or more digits, you'll often decide to truncate (or round) the number to two places, using the first digit as the stem and the second as the leaf.
Example: 432, 540, 571, and 638
(indicate $6 \mid 3$ as 630-639)

$$
\begin{array}{l|l}
6 & 3 \\
5 & 47 \\
4 & 3
\end{array}
$$

Stemplot						
2	5					Raw Data:
3	5	2	2	4	1	35, 45, 42, 45,
4	5	2	5			$\begin{aligned} & 41,32,25,56 \\ & 67,76,65,53 \end{aligned}$
5	6	3	3			53, 32, 34, 47,
6	7	5				43, 31
7	6					
					5 in	25 years

- Use stemplots for small to fairly
 moderate sizes of data (25-100)

- Try to use graph paper
(or make sure that your numbers line up)

3	4	(this is okay...)	3	4 (this is NOT)			
4	1	1	5	9		4	1159
5	2	3	6		5	236	
6	0	1	7	8		6	0178
7	0	0	1	1	17	7	001117
8	4	4			8	44	

Stemplot

- Example
- The overall pattern of stemplot is irregular, as is often the case when there are only few observations. There do appear to be two clusters of countries. For example, why do the three central Asian countries (Kazakhstan, Tajikistan, and Uzbekistan) have very high literacy rates?

Stemplot

- Stemplots do not work well for large data sets where each stem must hold large number of leaves.
- To plot the distribution of a moderate number of observations, double the number of stems in a plot by splitting stems into two: one with leaves 0 to 4 and the other with leaves 5 through 9.
- When the observed values have many digits, trimming the numbers by removing the last digit or digits before making a stemplot is often best.
- Use your judgment in deciding whether to split stems and whether to trim.
- Remember: the purpose of a stemplot is to display the shape of the distribution.

Stemplot		
	Minitab	
- Example	Esamen -nx	
- Stemplot of tuitions and	Stan-and-laaf of Totlcoat: $N=h 0$ Leaf Unit $=1000$	
universities in Virginia, made in Minitab.		$:^{22222222222222222222222}$
- Leaf unit: 1000	(\%)	${ }_{1}^{1} 1202023$
- \$34,850 means \$34,000.		(10.409655
		1.88999 21212
		${ }_{2}^{2} 25$
the last three digits,		
leaving 34 thousand.		
- this is called "trimming"	,	

Stemplot

- Limitations:

- Stemplots display the actual values of the observations which makes stemplots awkward for large data sets.
- The picture presented by a stemplot divides the observations into groups (stems) determined by the number system rather than by judgment.

Visual representation of Quantitative Data: Dotplots

- The most basic method is a dotplot
- Every data point can be seen on the plot
- Construction method:
- Draw a horizontal axis (number line) that covers the full range of values for the variable and label it with the variable name. (usually there is no vertical axis)
- Scale and number the axis-look for the min and max values
- Put a dot on the axis for each data point
- If data duplicate, stack them vertically

Visual representation of Quantitative Data: Dotplots

- Example: Construct the dotplot for the set 4, 5, 5, 7, 6

Dotplots

Dotplots

What's wrong with this picture?!!

Time Plots

- Data sets composed of similar measurements taken at regular intervals over time
- Shows data values in chronological order
- Place time on horizontal scale
- Place the variable being measured on the vertical scale
- Connect data points with line segments

Timeplots: Order, Please!

- For some data sets, we are interested in how the data behave over time. In these cases, we construct timeplots of the data.

Rules For Any Graph

- Provide a title.
- Label axes.
- Identify units of measure.
- Present information clearly.

What is the Shape of the Distribution?

1. Does the graph of the data (histogram) have a single, central hump or several separated humps?
2. Is the histogram symmetric?
3. Do any unusual features stick out?

Shape of a Distribution: Humps

- Does the histogram have a single, central hump or several separated bumps?
- Humps in a histogram are called modes.
- A histogram with one main peak is dubbed unimodal; histograms with two peaks are bimodal; histograms with three or more peaks are called multimodal.

Skewed to the left/right

The thinner ends of a distribution are called tails.

Skewed to the left
(to the lower "numbers")

skewed to the right (to the higher "numbers")

Where is the Center of the Distribution?

- If you had to pick a single number to describe all the data what would you pick?
- It's easy to find the center when a histogram is unimodal and symmetric-it's right in the middle.
- On the other hand, it's not so easy to find the center of a skewed histogram or a histogram with more than one mode.

The Measures of Central Tendency

- Mean
- Median
- Mode

Mean

The mean of a data set is the average of all the data values.
If the data are from a sample, the mean is denoted by ${ }^{35}$

If the data are are from a population, the mean is denoted by μ (mu).

Median

I It is the value in the middle when the data items are arranged in ascending order (\mathbf{Q}_{2} or $\left.\mathbf{M}\right)$.

* It is insensitive to extreme scores or skewed distribution.
. It is the 'middle point' in a distribution. Middle value in ordered sequence
$>$ If odd \boldsymbol{n}, middle value of sequence.
$>$ If even n, average of 2 middle values.
* It is the measure of location most often reported for annual income and property value data.
* A few extremely large incomes or property values can inflate the mean but not the median.

Mean vs. Median

- The mean and the median are the most common measures of center.
- If a distribution is perfectly symmetric, the mean and the median are the same.
- The mean is not resistant to outliers.
- You must decide which number is the most appropriate description of the center...

Measures of Spread (Variability)

- Measures of variability "describe the spread or the dispersion of a set of data."
- Common Measures of Variability
- Range
- Interquartile Range (IQR)
- Variance
- Standard Deviation
- Like measures of Center, you must choose the most appropriate measure of spread.

How Spread out is the Distribution?

9. Variation matters, and Statistics is about variation. Without variability, there would be no need for the subject © .

- When describing data, never rely on center alone.
* Are the values of the distribution tightly clustered around the center or more spread out?
* Always report a measure of spread (or variation) along with a measure of center when describing a distribution numerically.

The Range

* The range of a data set is the difference between the largest and smallest data values.
\# It is the simplest measure of variability.
* It is very sensitive to the smallest and largest data values.
* A disadvantage of the range is that a single extreme value can make it very large and, thus, no $35 \times 41 \times 44 \times 45$ representative of the data overall.

Example:

Range $=$ Largest - Smallest

$$
=48-35
$$

$$
=13
$$

Quartiles

Quartiles divide the data into four equal sections.

- $\mathrm{Q}_{1}: 25 \%$ of the data is set below the first quartile (also the $25^{\text {th }}$ percentile).
- $\mathrm{Q}_{2}: 50 \%$ of the data is set below the second quartile (this is also $50^{\text {th }}$ percentile and the median).
- $\mathrm{Q}_{3}: 75 \%$ of the data is set below the third quartile (also the $75^{\text {th }}$ percentile).
The quartiles border the middle half of the data.
Quartile values are not necessarily members of the data set.

Quartiles

C. To findQ1 and Q3, order data from min to max.

D Determine the median, if necessary.

- The first quartile is the middle of the 'bottom half'.
- The third quartile is the middle of the 'top half'.

InterQuartile Range (IQR)
 * It is the range for the middle 50\% of the data.
 It overcomes the sensitivity to extreme data values.
 I Also known as Midspread: Spread in the Middle 50\%
 F The IQR of a data set is the difference between the third quartile and the first quartile.
 $$
\mathrm{IQR}=\mathrm{Q}_{3}-\mathrm{Q}_{1}
$$

Example] $\begin{array}{llllllllll}11 & 12 & 13 & 16 & 16 & 17 & 17 & 18 & 21\end{array}$

Standard Deviation © To calculate Standard Deviation: [if Calculate the mean. II Determine each observation's deviation ($\mathbf{x}-\mathbf{x b a r}$). "Average" the squared-deviations by dividing the total squared deviation by $(\boldsymbol{n - 1})$. 든 This quantity is the Variance. $\boxed{6}$ Square root the result to determine the Standard Deviation.

Standard Deviation

To calculate Standard Deviation:
II Calculate the mean.
Determine each observation's deviation (x - xbar). total squared deviation by $(n-1)$
This quantity is the Variance.
Equare root the result to determine the Standard Deviation.

Example: Quartiles

Ordered array: $106,109,114,116,121,122,125,129$

- $\mathrm{Q}_{1} \quad i=\frac{25}{100}(8)=2 \quad Q_{1}=\frac{109+114}{2}=1115$
- Q_{2} :
$i=\frac{50}{100}(8)=4 \quad Q_{2}=\frac{116+121}{2}=1185$
- Q_{3} :
$i=\frac{75}{100}(8)=6 \quad Q_{3}=\frac{122+125}{2}=1235$

Standard Deviation

- Standard Deviation is a measure of the "average" deviation of all observations from the mean. It is the most frequently used measure of variability/spread.
It is the positive square root of the variance of a data set.
It is measured in the same units as the data, making it more easily comparable, than the variance, to the mean.
${ }^{\otimes}$ It provides an overall measurement of how much participants' scores differ from the mean score of their group. It is a special type of average of the deviations of the scores from their mean.
IThe more spread out participants are around their mean, the larger the standard deviation.

Pattern of a Distribution "SOCS"

- Spread

- Range: The difference in the largest and smallest value. (Max - Min)
- Standard Deviation: Measures spread by looking at how far observations are from their mean.
The computational formula for the standard deviation is

$$
s=\sqrt{\frac{1}{n-1} \sum\left(x_{i}-\bar{x}\right)^{2}}
$$

- Interquartile Range (IQR): Distance between the first quartile $\left(\mathbf{Q}_{1}\right)$ and the third quartile $\left(\mathbf{Q}_{3}\right)$. $\mathbf{I Q R}=\mathbf{Q}_{3}-\mathbf{Q}_{\mathbf{1}}$
$\mathbf{Q}_{\mathbf{1}}-25 \%$ of the observations are less than \mathbf{Q}_{1} and 75% are greater than Q_{1}.
$\mathbf{Q}_{3}-75 \%$ of the observations are less than Q_{3} and 25% are greater than Q_{3}.

SOCS

- Shape: The shape is bimodal, and around each mode the shape is roughly symmetric.
- Outlier/Unusual features: There is a gap in the lower 40's, with a possible outlier in the mid 30 's.
- Center: This distribution of quiz scores appears to have two modes, one at around 55, and another at around 80.
- Spread: The spread is from the mid-30's to the mid-90's.

Pattern of a Distribution "SOCS"

- Shape

- Modes: Major peaks in the distribution
- Symmetric: The values smaller and larger than the midpoint are mirror images of each other
- Skewed to the right: Right side of the graph extends much farther out than the left side.
- Skewed to the left: Left side of the graph extends much farther out than the right side.
- Center (Location)
- Mean: The arithmetic average. Add up the numbers and divide by the number of observations.
- Median: List the data from smallest to largest. If there is an odd number of data values, the median is the middle one in the list. If there is an even number of data values, average the middle two in the list

Pattern of a Distribution "SOCS"

- Outlier/Unusual Feature

- An individual value that falls outside the overall pattern.
- Identifying an outlier is a matter of judgment. Look for points that are clearly apart from the body of the data, not just the most extreme observations in a distribution.
- You should search for an explanation for any outlier.
- Sometimes outliers points to errors made in recording data.
- In other cases, the outlying observation may be caused by equipment failure or other unusual circumstances.
Rule of Thumb
$1.5 \times$ IQR

More SOCS...

- Shape: The shape is unimodal and skewed to the left (to the lower grades)
- Outlier/Unusual features: There is a gap from the upper 50's to the upper 60's, with a possible outlier in the mid 50's.
- Center: This distribution of grades has a single mode at around 100.
- Spread: The spread is from the mid-50's to about 100.

Interpreting Graphs: Outliers

No Outliers

Possible Outlier

- Are there any strange or unusual measurements that stand out in the data set?

Comparing Distributions

Compare the

 following distributions of ages for female and male heart attack patients.

Comparing Distributions

- Spread: Both distributions have similar spreads: females from around $30-100$, and males from about 24-96. Overall, the distribution for female ages is slightly higher
 than that for male ages.
- (There are no outliers or unusual features)
- YOU MUST USE COMPLETE
 SENTENCES!!!

Data Change

- A survey conducted in a college intro stats class asked students about the number of credit hours they were taking that quarter. The number of credit hours for a random sample of 16 students is given in the table below.

10	10	12	14	15	15	15	15
17	17	19	20	20	20	20	22

- Compute the following:
a) Mean
b) Median
c) Range
d) IQR
e) Standard Deviation

Data Change

- Suppose that the student taking 22 credit hours in the data set in the previous question was actually taking 28 credit hours instead of 22 (so we would replace the 22 in the data set with 28). Indicate whether changing the number of credit hours for that student would make each of the following summary statistics increase, decrease, or stay about the same:

10	10	12	14	15	15	15	15
17	17	19	20	20	20	20	28

a) Mean
b) Median
c) Range
d) IQR
e) Standard Deviation

