Starter Ch. 5
 2005 \#1a

The goal of a nutritional sudy was to compare the caloric intake of atolescents iving in rurai areas of the Unite
Slatos with tie caloric cintake of alolescente living in arban arsaso
 from one high school in an uthan aco was a wo wiected. Each student in each sample kepr pecerds of all the foo the or she consunced in one day.
The baik-tio-tack semplet oclew diyplays the nunter of caleries of food consuned per kilogran of body weigh For each sudent on that day

Stem: tens
teaf anes
(a) Write a few sentences comparing the distribution of the daily calosic intake of ninti-grade studeats in the rural high schoct with the distribution of the daily caloric intake of ninth grade stedents in the uban high schoot.

CW Ch. 4: Regression

L1	L2
87	88
84	86
83	73
81	67
78	83
65	80
50	78
78	$?$
93	$?$
86	$?$

- Create a scatterplot
- Find the equation of the regression line
- Predict the scores

Chapter 5:
Understanding and Comparing Distributions

Starter Chapter 5: Agility Test

"Performance of fourth-grade students on an agility test" COPY THESE DATA
Boys: 22, 17, 18, 29, 22, 22, 23, 24, 23, 17, 21
Girls: 25, 20, 12, 19, 28, 24, 22, 21, 25, 26, 25, 16, 27, 22

- Enter these data in L1 (Boys) and L2 (Girls).
- Construct a side-by-side boxplot
- Write a few sentences comparing the distributions above. (Be Sure to comment on the shape, center, spread and outliers).
- How do these fourth graders compare in terms of agility?

Chapter Objectives

At the end of this chapter you should be able to:
Calculate numerical summaries of quantitative data to describe center appropriate (median, mean, quartiles) and spread (range, interquartile range, standard deviation).

- Describe the characteristics of various numerical summaries with emphasis on the effects of outliers.
* Interpret the values of the numerical summaries for a particular data set.
Match graphical displays of quantitative data to the values of the summary statistics.
* Explore different ways of examining the relationship between two variables when one is quantitative and the other is categorical.

Finding the median, quartiles and inter-quartile range.
Example 1: Find the median and quartiles for the data below. $12,6,4,9,8,4,9,8,5,9,8,10$

$4, \quad 4, \quad 5,|6, \quad 8, \quad 8,|8, \quad 9, \quad 9| 9,, \quad 10,12$
 Inter-Quartile Range $=9-5.5=3.5$

Finding the median, quartiles and inter-quartile range.

Example 2: Find the median and quartiles for the data below.
$6,3,9,8,4,10,8,4,15,8,10$

Box-and-Whisker Plots (Boxplots)

* A boxplot summarizes data using the median $\left(\mathrm{Q}_{2}\right)$, upper $\left(Q_{3}\right)$ and lower quartiles $\left(Q_{1}\right)$, and the extreme (least and greatest) values. This is called the 5 -
Number Summary. It allows you to see important characteristics of the data at a glance.

The Five-Number Summary

n The five-number summary of a distribution reports its median, quartiles, and extremes (maximum and minimum).

- Example: The fivenumber summary for the daily wind speed is:

Box-and-Whisker Plots (Boxplots)

Study your boxplot to determine what it is telling you. Make a statement about what it is saying, then support the statement with facts from your graph. You should include the following in your interpretation:
\& Range or spread of the data and what it means to your graph
Quartiles-compare them. What are they telling you about the data?

* Median- this is an important part of the graph, and should be an important part of the interpretation.
* Percentages should be used to interpret the data, where relevant

Box-and-Whisker Plots (Boxplots)

Example:

F The gas mileages in miles per gallon (mpg) of 4cylinder manual transmission cars are in the table below.
ξ Find the extreme values, $\mathrm{Q}_{1}, \mathrm{Q}_{2}$, and Q_{3}. Interpret.

28	32	42	37
30	25	44	38
24	32	33	44
38	34	30	44
31	28	31	29
39	29	32	29

Box-and-Whisker Plots (Boxplots)

Example:

\% Min $=24$
$\mathrm{Q}_{1}=29$
${ }_{\xi} \mathrm{Q}_{2}=32$
$\mathrm{Q}_{3}=38$
\& $\mathrm{Max}=44$

Box-and-Whisker Plots (Boxplots)

Miles per gallon (mpg)

* The boxplot clearly shows that there is a lot of different gas mileages on various 4-cylinder vehicles.
* The mileage ranged from 24 miles per gallon (mpg) to a high of 44 mpg . This is a 20 miles per gallon spread, which in car mileage is quite a bit of difference.

Box-and-Whisker Plots (Boxplots)

Miles per gallon (mpg)
\% The $1^{\text {st }}$ quartile reads as 29 mpg which means that 75% of the vehicles in this study got 29 mpg or more.

- The $3{ }^{\text {rd }}$ quartile tells us that 25% of these cars got 38 mpg or higher which is really good mileage.
* The median cuts the data in half. The median is 32 mpg . Therefore half the cars in the study received 32 mpg or higher.

5-Number Summary, Boxplots

8 The 5-Number Summary provides a reasonably complete description of the center and spread of distribution

MIN	Q1	MED	Q3	MAX

We can visualize the 5-Number Summary with a boxplot.
Upperfence $=\mathbf{Q}_{\mathbf{3}}+\mathbf{1 . 5} \mathrm{IQR}$
Lower fence $=\mathbf{Q}_{1}$ - 1.5 IQR

* The fences are just for construction and are not part of the display. Any data beyond the fences are outliers.

The Big Picture...

The distribution is unimodal and skewed to the right.
The high value may be a possible outlier.

- Median daily wind speed is about 1.90 mph and the IQR is reported to be 1.78 mph .
- Can we say more?

Construction Boxplots

2) Erect "fences" around the main part of the data.

- The upper fence is 1.5 IQRs above the upper quartile.
- The lower fence is 1.5 IQRs below the lower quartile.
- Note: the fences only help with constructing the boxplot and should not appear in the final display.

The Big Picture... Read p. 80

We can answer much more interesting questions about variables when we compare distributions for different groups.
Below is a histogram of the Average Wind Speed for every day in 1989.

Construction Boxplots

1) Draw a single vertical (or horizontal) axis spanning the range of the data. Draw short horizontal lines at the lower and upper quartiles and at the median. Then connect them with vertical lines to form a box.

Construction Boxplots

3) Use the fences to grow "whiskers."

- Draw lines from the ends of the box up and down to the most extreme data values found within the fences.
- If a data value falls outside one of the fences, we do not connect it with a whisker.

Construction Boxplots

4) Add the outliers by displaying any data values beyond the fences with special symbols.

- We often use a different symbol for "far outliers" that are farther than 3 IQRs from the quartiles.

Comparing Groups

n It is almost always more interesting to compare groups.
n With histograms, note the shapes, centers, and spreads of the two distributions.

n What does this graphical display tell you?

Comparing Groups

n Boxplots offer an ideal balance of information and simplicity, hiding the details while displaying the overall summary information.
n We often plot them side by side for groups or categories we wish to compare.

What do these boxplots tell you?

Wind Speed: Making Boxplots

n Compare the histogram and boxplot for daily wind speeds:

n How does each display represent the distribution?

TI-83/84: Boxplots

- Press STAT PLOT.
\square Select Plot1
- Turn Plot 1 On.
- Select the Boxplot Type.
- Specify list L_{1}.
- Press ZOOM.
\square Select ZoomStat (\#9) and press ENTER.

Anything Unusual/Outlier?

Do any unusual features stick out?

- Don't ignore outliers. Outliers can affect data summaries, but we can't just throw them out. We should call attention to them, not conceal them.
- The best policy is to make note of the outliers and try to figure out more information about them.
- If you can't identify a reason for the point, do calculations both with and without the outlier and see how much it affects the outcome.

Anything Unusual/Outlier?

Do any unusual features stick out?

- Sometimes it's the unusual features that tell us something interesting or exciting about the data.
- You should always mention any stragglers, or outliers, that stand off away from the body of the distribution.
- Are there any gaps in the distribution? If so, we might have data from more than one group.

Anything Unusual/Outlier?

- The following histogram has possible outliersthere are three cities in the leftmost blh

Determining Outliers "1.5-IQR Rule"

- InterQuartile Range "IQR": Distance between Q1 and Q3. Resistant measure of spread...only measures middle 50% of data.
- IQR = Q3-Q1 \{width of the "box" in a boxplot
- 1.5 IQR Rule: If an observation falls more than 1.5 IQRs above Q3 or below Q1, it is an outlier.

Why 1.5? According to John Tukey, 1 IQR seemed like too little and 2 IQRs seemed like too much...

1.5•IQR Rule

- To determine outliers:
\square Find 5-Number Summary
(Determine IQR
Multiply: $1.5 \times \mathrm{IQR}$
(Set up "fences" Q1- (1.5 • IQR) and $\mathrm{Q} 3+(1.5 \cdot \mathrm{IQR})$
V Observations "outside" the fences are outliers.

Boxplots

Box plots from raw data
Fiest paeppeareioordlef bissixarney times to school each morning These are his time to the nearest minute for 25 days:

$$
\begin{aligned}
& \text { (22) } 16,16,28,28,18,18,19,29,29,20,26,(29) \\
& 21,20,29,30,29,(26) \\
& 26,28,28,29,30,(10)
\end{aligned}
$$

Minimum value
Maximum value
Median
Lowen maluartiof pieces of data, n
UppAcerdiaffarexitilenposition $\frac{1}{2}=\frac{25-11}{42}=\frac{2 \sqrt{3}+1}{4}=6.25$
Upper Quartile position $\quad 3\left(\frac{n+1)}{4}=3\left(\frac{25+1)}{4}=18.75\right.\right.$

Timeplots: Order, Please!

- A timeplot of a variable plots each observation against the time a which it was measured.
- Always mark the time scale on the horizontal axis and the variable of interest on the vertical axis.
- If there are not too many points, connecting the points by lines helps show the pattern of changes over time.
- When describing a time plot, do NOT use SOCS!!
- Instead, describe the TREND you see over time!

Timeplots: Order, Please!

Look for:

- Trends - overall pattern that indicates a longterm upward or downward movement over time.
- Seasonal variation - a pattern that repeats itself at regular time intervals.

Timeplots: Order, Please!

Look for:

- Trends - overall pattern that indicates a longterm upward or downward movement over time.
- Seasonal variation - a pattern that repeats itself at regular time intervals.

Timeplots: Order, Please!

Time-Series Graph of Distance (in miles) Jogged in 30 Minutes

Pattern of a Distribution "SOCS"

- Spread
- Range: The difference in the largest and smallest value. (Max - Min)
- Standard Deviation: Measures spread by looking at how far observations are from their mean.
The computational formula for the standard deviation is

$$
s=\sqrt{\frac{1}{n-1} \sum\left(x_{i}-\bar{x}\right)^{2}}
$$

- Interquartile Range (IQR): Distance between the first quartile $\left(\mathbf{Q}_{1}\right)$ and the third quartile $\left(\mathbf{Q}_{3}\right) . \mathbf{I Q R}=\mathbf{Q}_{\mathbf{3}}-\mathbf{Q}_{\mathbf{1}}$ $\mathbf{Q}_{\mathbf{1}}-25 \%$ of the observations are less than Q_{1} and 75% are greater than Q_{1}.
$\mathbf{Q}_{\mathbf{3}}-75 \%$ of the observations are less than Q_{3} and 25% are greater than Q_{3}.

Pattern of a Distribution "SOCS"

- Outlier/Unusual Feature
- An individual value that falls outside the overall pattern.
- Identifying an outlier is a matter of judgment. Look for points that are clearly apart from the body of the data, not just the most extreme observations in a distribution.
- You should search for an explanation for any outlier.
- Sometimes outliers points to errors made in recording data.
- In other cases, the outlying observation may be caused by equipment failure or other unusual circumstances.

Rule of Thumb

$$
1.5 \times \mathrm{IQR}
$$

Interpreting Graphs: Location and Spread

- Where is the data centered on the horizontal axis, and how does it spread out from the center?

Interpreting Graphs: Outliers

No Outliers

- Are there any strange or unusual measurements that stand out in the data set?

Comparing Distributions

- Shape: The shape is unimodal and skewed to the left (to the lower grades)
- Outlier/Unusual features: There is a gap from the upper 50's to the upper 60's, with a possible outlier in the mid 50's.
- Center: This distribution of grades has a single mode at around 100.
- Spread: The spread is from the mid-50's to about 100.

Comparing Distributions

Compare the following distributions of ages for female and male heart attack
 patients.

Comparing Distributions

Be sure to use language of comparison.

- Center: This distribution of ages for females has a higher center (at around 78) than the distribution for male patients (around 62).
- Shape: Both distributions are unimodal. The distribution for males is nearly symmetric, while the distribution for females is slightly skewed to the lower ages.

Modified Boxplot

* A boxplot in which the outliers are indicated.

Extend the whiskers from the box to the smallest and largest values that are within the inner fences.
\% Any values that are outside the inner fences should be drawn as individual dots. These dots represent outliers.

Example:

Draw a modified boxplot of the sample

$$
9,13,39,40,42,46,49,54,55,60,84 .
$$

*Re-expressing/Transforming Skewed Data to Improve Symmetry (cont.)
> One way to make a skewed distribution more symmetric is to re-express or transform the data by applying a simple function (e.g., logarithmic function).
> Note the change in skewness from the raw data (previous slide) to
 the transformed data (right):

