CHAPTER

Linear
Regression

he Whopper™ has been Burger King’s signature sandwich since 1957.

WHO  tems on the Burger One Double Whopper with cheese provides 53 grams of protein—all the

King menu
IV tg tent and protein vou need in a day. It also supplies 1020 calories and 65 grams
tc:.t?ale gtcc(:;ti;tan of fat. The Daily Value (based on a 2000-calorie diet) for fat is 65 grams.
. So after a Double Whopper you'll want the rest of your calories that day to be
UNITS Grams of protein fat-free.! . : :
Grams_’ of fat Of course, the Whopper isn’t the only item Burger King sells. How are fat
HOW  Supplied by BK on and protein related on the entire BK menu? The scatterplot of the Fat (in grams)
&qges_: @ e Bin versus the Protein (in grams) for foods sold at Burger King shows a positive, mod-
o ste erately strong, linear relationship.
o FIGURE 81
80 T . Total Fat versus Protein for 30 items on the
BK menu. The Double Whopper is in the
4 ° upper right corner. It's extreme, but is it
lideo: Manatees an ° fofof //ﬁey
AST e M d 45
Motorboats. Are motorboats = e o ° ° e
killing more manatees in Florida?
Here's the story on video. ° *
L] ° °
o
0 ° } } |
0.0 125 250 375 50.0
Protein (g)

AS Activity: Linear Equations. If you want 25 grams ofiprote‘m in your 14unch, how much fat shou'ld. you ex-
For a quick review of linear pect to consume at Burger King? The correlation between Fat and Protein is 0.83, a
equations, view this activity and sign that the linear association seen in the scatterplot is fairly strong. But strength
play with the interactive tool. of the relationship is only part of the picture. The correlation says, “The linear as-

sociation between these two variables is fairly strong,” but it doesn’t tell us what
the line is.

1Sorry about the fries.
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172 CHAPTER 8

“Statisticians, like artists, have
the bad habit of falling in love
with their models.”

—George Box, famous
statistician

AS Activity: Residuals.
Residuals are the basis for fitting
lines to scatterplots. See how
they work.

Linear Regression

Now we can say more. We can model the relationship with a line and give its
equation. The equation will let us predict the fat content for any Burger King
food, given its amount of protein.

We met our first model in Chapter 6. We saw there that we can specify a Nor-
mal model with two parameters: its mean (u) and standard deviation (o).

For the Burger King foods, we’d choose a linear model to describe the rela-
tionship between Protein and Fat. The linear model is just an equation of a
straight line through the data. Of course, no line can go through all the points, but
a linear model can summarize the general pattern with only a couple of parame-
ters. Like all models of the real world, the line will be wrong—wrong in the sense
that it can’t match reality exactly. But it can help us understand how the variables
are associated.

e Not only can’t we draw a line through all the points, the best line might not

even hit any of the points. Then how can it be the “best” line? We want to
find the line that somehow comes closer to all the points than any other line.
Some of the points will be above the line and some below. For example, the
line might suggest that a BK Broiler chicken sandwich with 30 grams of pro-
tein should have 36 grams of fat when, in fact, it actually has only 25 grams
of fat. We call the estimate made from a model the predicted value, and
write it as i (called y-hat) to distinguish it from the true value y (called, uh, y).
The difference between the observed value and its associated predicted
value is called the residual. The residual value tells us how far off the
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model’s prediction is at that point. The BK Broiler chicken residual would
bey — y =25 — 36 = —11 g of fat.
To find the residuals, we always subtract the predicted

residual = observed value — predicted value

A negative residual means the predicted value is too
big—an overestimate. And a positive residual shows
that the model makes an underestimate. These may
seem backwards until you think about them.

value from the observed one. The negative residual tells us
that the actual fat content of the BK Broiler chicken is about
11 grams less than the model predicts for a typical Burger
King menu item with 30 grams of protein.
Our challenge now is how to find the right line.
/

“Best Fit” Means Least Squares

AS Activity: The Least
Squares Criterion. Does your
sense of “best fit” look like the
least squares line?

When we draw a line through a scatterplot, some residuals are positive and
some negative. We can’t assess how well the line fits by adding up all the
residuals—the positive and negative ones would just cancel each other out. We
faced the same issue when we calculated a standard deviation to measure

spread. And we deal with it the same way here: by

Who’s on First

In 1805, Legendre was the first to publish the “least squares”

squaring the residuals. Squaring makes them all
positive. Now we can add them up. Squaring also
emphasizes the large residuals. After all, points

solution to the problem of fitting a line to data when the
points don’t all fall exactly on the line. The main challenge
was how to distribute the errors “fairly.” After considerable
thought, he decided to minimize the sum of the squares of
what we now call the residuals. When Legendre published
his paper, though, Gauss claimed he had been using the
method since 1795. Gauss later referred to the “least

squares” solution as “our method” (principium nostrum), which

certainly didn’t help his relationship with Legendre.

near the line are consistent with the model, but
we’re more concerned about points far from the
line. When we add all the squared residuals to-
gether, that sum indicates how well the line we
drew fits the data—the smaller the sum, the better
the fit. A different line will produce a different sum,
maybe bigger, maybe smaller. The line of best fit is
the line for which the sum of the squared residuals
is smallest, the least squares line.
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Least squares. Try to minimize the
sum of areas of residual squares as
you drag a line across a scatterplot.
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You might think that finding this line would be pretty hard. Surprisingly,
it’s not, although it was an exciting mathematical discovery when Legendre
published it in 1805 (see margin note on previous page).

Correlation and the Line

Z Protein

FIGURE 8.2

The Burger King scatterplot in
Z-Scores.

NOTATION ALERT:

“Putting a hat on it”is
standard Statistics notation to
indicate that something has
been predicted by a model.
Whenever you see a hat over a
variable name or symbol, you
can assume it is the predicted
version of that variable or
symbol (and look around for
the model).

Z Protein

FIGURE 8.3

Standardized fat vs. standardized pro-
tein with the regression line. Each one
standard deviation change in protein
results in a predicted change of r stan-
dard deviations in fat.

If you suspect that what we know about correlation can lead us to the equation of
the linear model, you're headed in the right direction. It turns out that it’s not a
very big step. In Chapter 7 we learned a lot about how correlation worked by
looking at a scatterplot of the standardized variables. Here’s a scatterplot of z,
(standardized Fat) vs. z, (standardized Protein).

What line would you choose to model the relationship of the standardized
values? Let’s start at the center of the scatterplot. How much protein and fat does
a typical Burger King food item provide? If it has average protein content, ¥, what
about its fat content? If you guessed that its fat content should be about average,
¥, as well, then you've discovered the first property of the line we're looking for.
The line must go through the point (¥, i). In the plot of z-scores, then, the line
passes through the origin (0, 0).

You might recall that the equation for a line that passes through the origin can
be written with just a slope and no intercept:

y = mx.

The coordinates of our standardized points aren’t written (x, y); their coordinates
are z-scores: (zy, z,). We'll need to change our equation to show that. And we’ll
need to indicate that the point on the line corresponding to a particular z, is iy,
the model’s estimate of the actual value of zy. So our equation becomes
Z, = mz,.

Many lines with different slopes pass through the origin. Which one fits our
data the best? That is, which slope determines the line that minimizes the sum of
the squared residuals? It turns out that the best choice for m is the correlation co-
efficient itself, 7! (You must really wonder where that stunning assertion comes
from. Check the Math Box.)

Wow! This line has an equation that’s about as simple as we could possibly
hope for:

Z, =12

Great. It’s simple, but what does it tell us? It says that in moving one standard
deviation from the mean in x, we can expect to move about r standard deviations
away from the mean in y. Now that we’re thinking about least squares lines, the
correlation is more than just a vague measure of strength of association. It’s a
great way to think about what the model tells us.

Let’s be more specific. For the sandwiches, the correlation is 0.83. If we stan-
dardize both protein and fat, we can write

Zrat = 0.832Zpyotein-

This model tells us that for every standard deviation above (or below) the mean a
sandwich is in protein, we’ll predict that its fat content is 0.83 standard deviations
above (or below) the mean fat content. A double hamburger has 31 grams of pro-
tein, about 1 SD above the mean. Putting 1.0 in for zp,,, in the model gives a Zp,;
value of 0.83. If you trust the model, you'd expect the fat content to be about 0.83
fat SDs above the mean fat level. Moving one standard deviation away from the
mean in x moves our estimate r standard deviations away from the mean in y.

If r = 0, there’s no linear relationship. The line is horizontal, and no matter
how many standard deviations you move in x, the predicted value for y doesn’t
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change. On the other hand, if r = 1.0 or —1.0, there’s a perfect linear association.
In that case, moving any number of standard deviations in x moves exactly the
same number of standard deviations in y. In general, moving any number of stan-
dard deviations in x moves r times that number of standard deviations in y.

How Big Can Predicted Values Get?

Suppose you were told that a new male student was about to join the class, and
you were asked to guess his height in inches. What would be your guess? A safe
guess would be the mean height of male students. Now suppose you are also told
that this student has a grade point average (GPA) of 3.9—about 2 SDs above the
mean GPA. Would that change your guess? Probably not. The correlation between
GPA and height is near 0, so knowing the GPA value doesn't tell you anything and
doesn’t move your guess. (And the equation tells us that as well, since it says that
we should move 0 X 2 SDs from the mean.)

On the other hand, suppose you were told that, measured in centimeters, the
student’s height was 2 SDs above the mean. There’s a perfect correlation between
height in inches and height in centimeters, so you’d know he’s 2 SDs above mean
height in inches as well. (The equation would tell us to move 1.0 X 2 SDs from the

) ) ) mean.)
g}’fg‘;fgﬁ,gj /’trzf,?t;v:jg%?it’;g:st%;gﬁk What if you're told that the student is 2 SDs above the mean in shoe size?
lines to data by the same method. Would you still guess that he’s of average height? You might guess that he’s taller
than average, since there’s a positive correlation between height
i - and shoe size. But would you guess that he’s 2 SDs above the
The First Regression mean? When there was no correlation, we didn’t move away
Sir Francis Galton related the heights of sons to from the mean at all. With a perfect correlation, we moved our
the heights of their fathers with a regression line. guess the full 2 SDs. Any correlation between these extremes

The slope of his line was less than 1.That is, sons
of tall fathers were tall, but not as much above the
average height as their fathers had been above
their mean. Sons of short fathers were short, but
generally not as far from their mean as their
fathers. Galton interpreted the slope correctly

should lead us to move somewhere between 0 and 2 SDs above
the mean. (To be exact, the equation tells us to move r X 2 stan-
dard deviations away from the mean.)

Notice that if x is 2 SDs above its mean, we won't ever guess
more than 2 SDs away for y, since r can’t be bigger than 1.0.2

as indicating a “regression” toward the mean So, each predicted y tends to be closer to its mean (in standard
height—and “regression” stuck as a description deviations) than its corresponding x was. This property of the
of the method he had used to find the line. linear model is called regression to the mean, and the line is

called the regression line.

JUST CHECKING

A scatterplot of house Price (in thousands of dollars) vs. house Size (in thousands of square feet)
for houses sold recently in Saratoga, NY shows a relationship that is straight, with only moderate scat-
ter and no outliers. The correlation between house Price and house Size is 0.77.

1. You go to an open house and find that the house is 1 standard deviation above the mean in size.
What would you guess about its price?

2. You read an ad for a house priced 2 standard deviations below the mean. What would you guess
about its size?

3. Afriend tells you about a house whose size in square meters (he’s European) is 1.5 standard devia-
tions above the mean. What would you guess about its size in square feet?

2 In the last chapter we asserted that correlations max out at 1, but we never actually proved
that. Here’s yet another reason to check out the Math Box on the next page.
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-_________________________________________________________________|
MATH BOX

Where does the equation of the line of best fit come from? To write the equation of any line, we
need to know a point on the line and the slope. The point is easy. Consider the BK menu exam-
ple. Since it is logical to predict that a sandwich with average protein will contain average fat,
the line passes through the point (%, 7).3

To think about the slope, we look once again at the z-scores. We need to remember a few
things:
1. The mean of any set of z-scores is 0. This tells us that the line that best fits the z-scores passes

through the origin (0,0).

2. The standard deviation of a set of z-scores is 1, so the variance is also 1. This means that

DMz —7) Dz -0 D

= 1, a fact that will be important soon.

n—1 n—1 n—1

. szzy
3. The correlationisr = 1
n—

also important soon.

Ready? Remember that our objective is to find the slope of the best fit line. Because it passes
through the origin, its equation will be of the form z, = mz,. We want to find the value for m that
will minimize the sum of the squared residuals. Actually we’ll divide that sum by n — 1 and
minimize this “mean squared residual,” or MSR. Here goes:

N >z — 1)
Minimize: MSR = ————5—
n—1
. A E(Zy - mzx)2
Since z, = mzy: MSR = B
E(zyz— 2mz,z, + mz,2)
Square the binomial: = pra—
Ezyz X7y ) >z
Rewrite the summation: =n—-1 M1 mo—1
4. Substitute from (2) and (3): =1 - 2mr + m?

Wow! That simplified nicely! And as a bonus, the last expression is quadratic. Remember
parabolas from algebra class? A parabola in the form y = ax? + bx + ¢ reaches its minimum at

b
its turning point, which occurs when x = 2 We can minimize the mean of squared residuals
(2
2(1)
Wow, again! The slope of the best fit line for z-scores is the correlation, r. This stunning fact

immediately leads us to two important additional results, listed below. As you read on in the
text, we explain them in the context of our continuing discussion of Burger King foods.

by choosing m =

® A slope of r for z-scores means that for every increase of 1 standard deviation in z, there is
an increase of r standard deviations in Z,. “Over one, up ,” as you probably said in algebra
class. Translate that back to the original x and y values: “Over one standard deviation in x,

up r standard deviations in §.”
rs
That’s it! In x- and y-values, the slope of the regression line is b = ==
SX

3 It’s actually not hard to prove this too.
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* We know choosing m = r minimizes the sum of the squared residuals, but how small does
that sum get? Equation (4) told us that the mean of the squared residuals is 1 — 2mr + m?.
Whenm = r,1 — 2mr + m?> = 1 — 2r> + r2 = 1 — r% This is the variability not explained by
the regression line. Since the variance in z, was 1 (Equation 2), the percentage of variability in
y that is explained by x is r2. This important fact will help us assess the strength of our models.

And there’s still another bonus. Because 72 is the percent of variability explained by our

model, 72 is at most 100%. If r2 < 1, then —1 =r < 1, proving that correlations are always
between —1 and +1. (Told you so!)

The Regression Line in Real Units

Why Is Correlation “r”?

In his original paper on
correlation, Galton used r for
the”index of correlation”
that we now call the
correlation coefficient. He
calculated it from the
regression of y on x or of x on
y after standardizing the
variables, just as we have
done. It’s fairly clear from
the text that he used r to
stand for (standardized)
regression.

AS Simulation: Interpreting
Equations. This demonstrates
how to use and interpret linear
equations.

Protein Fat
x=172g y=235¢g
sy =140¢g sy = 16.4¢g

r =083
Slope
sy
b= s
Intercept
by =y — bx

When you read the Burger King menu, you probably don’t think in z-scores. But
you might want to know the fat content in grams for a specific amount of protein
in grams.

How much fat should we predict for a double hamburger with 31 grams of
protein? The mean protein content is near 17 grams and the standard deviation is
14, so that item is 1 SD above the mean. Since r = 0.83, we predict the fat content
will be 0.83 SDs above the mean fat content. Great. How much fat is that? Well, the
mean fat content is 23.5 grams and the standard deviation of fat content is 16.4, so
we predict that the double hamburger will have 23.5 + 0.83 X 16.4 = 37.11 grams
of fat.

We can always convert both x and y to z-scores, find the correlation, use
Z, = rz,, and then convert Z, back to its original units so that we can understand
the prediction. But can’t we do this more simply?

Yes. Let’s write the equation of the line for protein and fat—that is, the actual
x and y values rather than their z-scores. In Algebra class you may have once seen
lines written in the form y = mx + b. Statisticians do exactly the same thing, but
with different notation:

¥ = Dby + byx.

In this equation, by is the y-intercept, the value of y where the line crosses the
y-axis, and by is the slope.*

First we find the slope, using the formula we developed in the Math Box.’ Re-
member? We know that our model predicts that for each increase of one standard
deviation in protein we’ll see an increase of about 0.83 standard deviations in fat.

In other words, the slope of the line in original units is

b 7rsy70.83><l6.4gfat7097 ¢ fat £ orotei
1T, T lagproten grams of fat per gram of protein.

Next, how do we find the y-intercept, by? Remember that the line has to go
through the mean-mean point (¥, ¥). In other words, the model predicts i/ to be the
value that corresponds to X. We can put the means into the equation and write
y= by + bix.

Solving for by, we see that the interceptisjust by = 7 — b

4 We changed from mx + b to by + byx for a reason—not just to be difficult. Eventually
we’ll want to add more x’s to the model to make it more realistic and we don’t want to use
up the entire alphabet. What would we use after m? The next letter is 1, and that one’s
already taken. 0? See our point? Sometimes subscripts are the best approach.

5 Several important results popped up in that Math Box. Check it out!



Units of y per unit of x
Get into the habit of
identifying the units by
writing down “y-units per
x-unit,” with the unit names
put in place.You’ll find it’1l
really help you to Tell about
the line in context.
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FIGURE 8.4

Burger King menu items in their

natural units with the regression line.
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For the Burger King foods, that comes out to

g fat

gprm X 17.2 g protein = 6.8 g fat.

by = 23.5 g fat — 0.97

Putting this back into the regression equation gives
]{ut\= 6.8 + 0.97 protein.

What does this mean? The slope, 0.97, says that an additional gram of protein is
associated with an additional 0.97 grams of fat, on average. Less formally, we
might say that Burger King sandwiches pack about 0.97 grams of fat per gram
of protein. Slopes are always expressed in y-units per x-unit. They tell how the
y-variable changes (in its units) for a one-unit change in the x-variable. When you
see a phrase like “students per teacher” or “kilobytes per second” think slope.

Changing the units of the variables doesn’t change the correlation, but for the
slope, units do matter. We may know that age and height in children are positively
correlated, but the value of the slope depends on the units. If children grow an av-
erage of 3 inches per year, that’s the same as 0.21 millimeters per day. For the
slope, it matters whether you express age in days or years and whether you meas-
ure height in inches or millimeters. How you choose to express x and y—what
units you use—affects the slope directly. Why? We know changing units doesn’t
change the correlation, but does change the standard deviations. The slope intro-
duces the units into the equation by multiplying the correlation by the ratio of s,
to s.. The units of the slope are always the units of y per unit of x.

How about the intercept of the BK regression line, 6.8? Algebraically, that’s
the value the line takes when x is zero. Here, our model predicts that even a BK
item with no protein would have, on average, about 6.8 grams of fat. Is that rea-
sonable? Well, the apple pie, with 2 grams of protein, has 14 grams of fat, so it’s
not impossible. But often 0 is not a plausible value for x (the year 0, a baby born
weighing 0 grams, ...). Then the intercept serves only as a starting value for our
predictions and we don’t interpret it as a meaningful predicted value.

B FOR EXAMPLE 344 A regression model for hurricanes

In Chapter 7 we looked at the relationship between the central pressure and maximum 150 4+
wind speed of Atlantic hurricanes. We saw that the scatterplot was straight enough, and .
then found a correlation of —0.879, but we had no model to describe how these two

important variables are related or to allow us to predict wind speed from pressure. % 125 4
Since the conditions we need to check for regression are the same ones we checked be- =
. . o . @
fore, we can use technology to find the regression model. It looks like this: ;)g
— 100 +
MaxWindSpeed = 955.27 — 0.8697CentralPressure g
Question: Interpret this model. What does the slope mean in this context? Does the §

intercept have a meaningful interpretation? B

The negative slope says that as CentralPressure falls,

MaxWindSpeed increases. That makes sense from our general un-
derstanding of how hurricanes work: Low central pressure pulls in

moist air, driving the rotation and the resulting destructive winds.

The slope’s value says that, on average, the maximum wind speed in-
creases by about 0.897 knots for every 1-millibar drop in central pressure.

Il L
t t
920 940 960 980 1000
Central Pressure (mb)

It’'s not meaningful, however, to interpret the intercept as the wind speed predicted for a central pressure of O—that
would be a vacuum. Instead, it is merely a starting value for the model.
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With the estimated linear model, fc/zt\ = 6.8 + 0.97 protein, it’s easy to predict fat
content for any menu item we want. For example, for the BK Broiler chicken sand-
wich with 30 grams of protein, we can plug in 30 grams for the amount of protein and
see that the predicted fat content is 6.8 + 0.97(30) = 35.9 grams of fat. Because the
BK Broiler chicken sandwich actually has 25 grams of fat, its residual is

fat — fab =25 — 359 = ~109g.

To use a regression model, we should check the same conditions for re-
gressions as we did for correlation: the Quantitative Variables Condition, the
Straight Enough Condition, and the Outlier Condition.

JUST CHECKING

Let’s look again at the relationship between house Price (in thousands of dollars) and house Size
(in thousands of square feet) in Saratoga. The regression model is

—
Price = —3.117 + 94.454 Size.

4. What does the slope of 94.454 mean?
. What are the units of the slope?

6. Your house is 2000 sq ft bigger than your neighbor’s house. How much more do you expect it to be
worth?

7. Is the y-intercept of —3.117 meaningful? Explain.

Wildfires are an ongoing source of concern shared by several government
agencies. In 2004, the Bureau of Land Management, Bureau of Indian Affairs,
Fish and Wildlife Service, National Park Service, and USDA Forest Service
spent a combined total of $890,233,000 on fire suppression, down from nearly
twice that much in 2002. These government agencies join together in the
National Interagency Fire Center, whose Web site (www.nifc.gov) reports sta-
tistics about wildfires.

Question: Has the annual number of wildfires been changing, on average? If
s0, how fast and in what way?

Plan State the problem. | want to know how the number of wildfires in the
continental United States has changed in the
past two decades.

Variables Identify the variables and I have data giving the number of wildfires for each

report the W’s. year (in thousands of fires) from 1982 to 2005.

Check the appropriate assumptions and V' Quantitative Variables Condition: Both

conditions. the number of fires and the year are

quantitative.




The Regression Line in Real Units 179

Just as we did for correlation, check the -
conditions for a regression by making a 166 1 o
picture. Never fit a regression without _ "
looking at the scatterplot first. LR ..'
2 ]
6L = "a L. "
8 .
o [
91+ "
[ '...
—_—
Note: It’s common (and usually simpler) 0 5 0 15 2 25
not to use four-digit numbers to identify Years since 1982
years. Here we have chosen to number
the years beginning in 1982, so 1982 is V' Straight Enough Condition: The scatter-
represented as year 0 and 2005 as year 23. plot shows a strong linear relationship
with a negative association.
V' Outlier Condition: No outliers are evident
in the scatterplot.
Because these conditions are satisfied, it is OK
to model the relationship with a regression line.
Mechanics Find the equation of the re- Year:

gression line. Summary statistics give the

=15 ing 19925
building blocks of the calculation. (representing )

X
s, = 7.07 years
(We generally report summary statistics

to one more digit of accuracy than the Fires:
data. We do the same for intercept and y = 114.096 fires
predicted values, but for sl'opes we usu- 5, = 28.342 fires
ally report an additional digit. Remember,
though, not to round off until you finish Correlation:
computing an answer.)® = —0.862

rs, —0.862(26.342)
Find the slope, b;. by = e 707

= —2.4556 fires per year

Find the intercept, by. bo =y = bix = 114096 — (~34556)15

= 1563.8637
So the least squares line is
v = 153.8637 — 3.4556x, or

Write the equation of the model, using Fires = 1563837 — 3.4556 year
meaningful variable names.

¢ We warned you in Chapter 6 that we'll round in the intermediate steps of a calculation
to show the steps more clearly. If you repeat these calculations yourself on a calculator or
statistics program, you may get somewhat different results. When calculated with more
precision, the intercept is 153,809 and the slope is —3.453.
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Conclusion Interpret what you have During the period from 1982 to 2005, the
ﬁ found in the context of the question. annual number of fires declined at an average

Discuss in terms of the variables and rate of about 3,456 (3.456 thousand) fires

their units. per year. For prediction, the model uses a base

estimation of 153,637 fires in 19862.

AS Activity: Find a
Regression Equation. Now that
we've done it by hand, try it with
technology using the statistics
package paired with your version
of ActivStats.

Residuals Revisited

The linear model we are using assumes that the relationship between the two

[ H EE
Why G for RES."’"E“ ?. variables is a perfect straight line. The residuals are the part of the data that hasn't
The flip answer is that ris been modeled. We can write
already taken, but the truth is
that e stands for “error.” No, Data = Model + Residual

that doesn’t mean it’s a
mistake. Statisticians often
refer to variability not Residual = Data — Model.
explained by a model as error.

or, equivalently,

Or, in symbols,

e=y— 1.
When we want to know how well the model fits, we can ask instead what the
model missed. To see that, we look at the residuals.

= FOR EXAMPLEg4 Katrina’s residual

Recap: The linear model relating hurricanes’ wind speeds to their central pressures was

/\
MaxWindSpeed = 955.27 — 0.897CentralPressure
Let's use this model to make predictions and see how those predictions do.

Question: Hurricane Katrina had a central pressure measured at 920 millibars. What does our regres-
sion model predict for her maximum wind speed? How good is that prediction, given that Katrina's ac-
tual wind speed was measured at 110 knots?

Substituting 920 for the central pressure in the regression model equation
gives

—_—
MaxWindSpeed = 955.27 — 0.897(920) = 120.03

The regression model predicts a maximum wind speed of 120 knots for Hurricane
Katrina.

The residual for this prediction is the observed value minus the predicted value:
N0 — 130 = —20kts.

In the case of Hurricane Katrina, the model predicte a wind epeed 20 knote higher than was actually observed.
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The Residual Standard Deviation 181

Residuals help us to see whether the model makes sense. When a
regression model is appropriate, it should model the underlying rela-
tionship. Nothing interesting should be left behind. So after we fit a re-

o gression model, we usually plot the residuals in the hope of finding . . .
° nothing.

A scatterplot of the residuals versus the x-values should be the
most boring scatterplot you've ever seen. It shouldn’t have any inter-
esting features, like a direction or shape. It should stretch horizontally,
with about the same amount of scatter throughout. It should show no

F

Protein (g)

FIGURE 8.5
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t t
0.0 125 250 375

t bends, and it should have no outliers. If you see any of these features,
find out what the regression model missed.

Most computer statistics packages plot the residuals against the
predicted values j, rather than against x. When the slope is negative,

The residuals for the BK menu regression look appropri-  the two versions are mirror images. When the slope is positive, they’'re

ately boring. virtually identical except for the axis labels. Since all we care about is
the patterns (or, better, lack of patterns) in the plot, it really doesn’t mat-
ter which way we plot the residuals.
JUST CHECKING

Our linear model for Saratoga homes uses the Size (in thousands of square feet) to estimate the
Price (in thousands of dollars): Price = —3.117 + 94.454Size. Suppose you're thinking of buying a

home there.

8. Would you prefer to find a home with a negative or a positive residual? Explain.

9. You plan to look for a home of about 3000 square feet. How much should you expect to have to pay?
10. You find a nice home that size selling for $300,000. What’s the residual?

The Residual Standard Deviation

Why n — 2 rather than

n — 1? Weusedn — 1fors
when we estimated the
mean. Now we're estimating
both a slope and an
intercept. Looks like a
pattern—and it is. We
subtract one more for each
parameter we estimate.

If the residuals show no interesting pattern when we plot them against x, we can
look at how big they are. After all, we're trying to make them as small as possible.
Since their mean is always zero, though, it’s only sensible to look at how much they
vary. The standard deviation of the residuals, s,, gives us a measure of how much
the points spread around the regression line. Of course, for this summary to make
sense, the residuals should all share the same underlying spread, so we check to
make sure that the residual plot has about the same amount of scatter throughout.
This gives us a new assumption: the Equal Variance Assumption. The associ-
ated condition to check is the Does the Plot Thicken? Condition. We check to
make sure that the spread is about the same all along the line. We can check that
either in the original scatterplot of y against x or in the scatterplot of residuals.
We estimate the standard deviation of the residuals in almost the way you’d

expect:
| Se?
s, =
¢ n—2

We don’t need to subtract the mean because the mean of the residuals ¢ = 0.

For the Burger King foods, the standard deviation of the residuals is 9.2 grams
of fat. That looks about right in the scatterplot of residuals. The residual for the
BK Broiler chicken was —11 grams, just over one standard deviation.
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It’s a good idea to make a histogram of the residuals. If we see a unimodal,
symmetric histogram, then we can apply the 68-95-99.7 Rule to see how well
the regression model describes the data. In particular, we know that 95% of the
residuals should be no larger in size than 2s,. The Burger King residuals look
like this:

# of Residuals

T

,

T T T
-276 -184 -92 0.0 92 184 276
Residuals

Sure enough, almost all are less than 2(9.2), or 18.4, g of fat in size.

R2—The Variation Accounted For

5

Fat Residuals

FIGURE 8.6

Compare the variability of total Fat with
the residuals from the regression. The
means have been subltracted to make it
easier to compare spreads. The varia-
tion left in the residuals is unaccounted
for by the model, but it’s less than the
variation in the original data.

Understanding R2. Watch the
unexplained variability decrease
as you drag points closer to the
regression line.

The variation in the residuals is the key to assessing how well the model fits.
Let’s compare the variation of the response variable with the variation of the
residuals. The total Fat has a standard deviation of 16.4 grams. The standard de-
viation of the residuals is 9.2 grams. If the correlation were 1.0 and the model
predicted the Fat values perfectly, the residuals would all be zero and have no
variation. We couldn’t possibly do any better than that.

On the other hand, if the correlation were zero, the model would simply pre-
dict 23.5 grams of Fat (the mean) for all menu items. The residuals from that pre-
diction would just be the observed Fat values minus their mean. These residuals
would have the same variability as the original data because, as we know, just
subtracting the mean doesn’t change the spread.

How well does the BK regression model do? Look at the boxplots. The varia-
tion in the residuals is smaller than in the data, but certainly bigger than zero.
That’s nice to know, but how much of the variation is still left in the residuals? If
you had to put a number between 0% and 100% on the fraction of the variation
left in the residuals, what would you say?

All regression models fall somewhere between the two extremes of zero cor-
relation and perfect correlation. We’d like to gauge where our model falls. As we
showed in the Math Box,” the squared correlation, r2, gives the fraction of the
data’s variation accounted for by the model, and 1 — r2 is the fraction of the orig-
inal variation left in the residuals. For the Burger King model, r2=0832 = 0.69,
and1 — r2is 0.31, s0 31% of the variability in total Fat has been left in the residu-
als. How close was that to your guess?

All regression analyses include this statistic, although by tradition, it is writ-
ten with a capital letter, R? and pronounced “R-squared.” An R? of 0 means that
none of the variance in the data is in the model; all of it is still in the residuals. It
would be hard to imagine using that model for anything.

7 Have you looked yet? Please do.



Is a correlation of 0.80 twice
as strong as a correlation of
0.40? Not if you think in
terms of R% A correlation

0f 0.80 means an R? of

0.802 = 64%. A correlation
of 0.40 means an R? of

0.40? = 16%—only a quarter
as much of the variability
accounted for. A correlation
of 0.80 gives an R? four times
as strong as a correlation of
0.40 and accounts for four
times as much of the
variability.

How Big Should R? Be? 183

Because R? is a fraction of a whole, it is often given as a percentage.8 For the
Burger King data, R? is 69%. When interpreting a regression model, you need to Tell
what R? means. According to our linear model, 69% of the variability in the fat
content of Burger King sandwiches is accounted for by variation in the protein
content.

How can we see that R? is really the fraction of variance accounted
for by the model? It's a simple calculation. The variance of the fat content of the
Burger King foods is 16.4> = 268.42. If we treat the residuals as data, the variance of
the residuals is 83.195.° As a fraction, that's 83.195/268.42 = 0.31, or 31%. That's
the fraction of the variance that is not accounted for by the model. The fraction that is
accounted for is 100% — 31% = 69%, just the value we got for R2.

‘-' "FOR EXAMPLE; Interpreting R?

Recap: Our regression model that predicts maximum wind speed in hurricanes based on the storm'’s central pressure has

R% = 77.3%.

Question: What does that say about our regression model?

An R? of 77.3% indicates that 77.%% of the variation in maximum wind speed can be accounted for by
the hurricane’s central pressure. Other factors, such as temperature and whether the storm is over
water or land, may explain some of the remaining variation.

JUST CHECKING

Back to our regression of house Price (in thousands of $) on house Size (in thousands of square
feet). The R? value is reported as 59.5%, and the standard deviation of the residualsis 53.79.

11. What does the R? value mean about the relationship of Price and Size?

12. Is the correlation of Price and Size positive or negative? How do you know?

13. If we measure house Size in square meters instead, would R? change? Would the slope of the line
change? Explain.

14. You find that your house in Saratoga is worth $100,000 more than the regression model predicts.
Should you be very surprised (as well as pleased)?

How Big Should R? Be?

R?is always between 0% and 100%. But what’s a “good” R? value? The answer
depends on the kind of data you are analyzing and on what you want to do with
it. Just as with correlation, there is no value for R? that automatically determines

8 By contrast, we usually give correlation coefficients as decimal values between —1.0 and 1.0.
9 This isn’t quite the same as squaring the s, that we discussed on the previous page, but
it’s very close. We'll deal with the distinction in Chapter 27.
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Some Extreme Tales

One major company
developed a method to
differentiate between
proteins.To do so, they had
to distinguish between
regressions with R? of 99.99%
and 99.98%. For this
application, 99.98% was not
high enough.

The president of a
financial services company
reports that although his
regressions give R? below 2%,
they are highly successful
because those used by his
competition are even lower.

that the regression is “good.” Data from scientific experiments often have R? in
the 80% to 90% range and even higher. Data from observational studies and sur-
veys, though, often show relatively weak associations because it’s so difficult to
measure responses reliably. An R? of 50% to 30% or even lower might be taken as
evidence of a useful regression. The standard deviation of the residuals can give
us more information about the usefulness of the regression by telling us how
much scatter there is around the line.

As we've seen, an R20f 100% is a perfect fit, with no scatter around the line.
The s, would be zero. All of the variance is accounted for by the model and none
is left in the residuals at all. This sounds great, but it's too good to be true for real
data.l®

Along with the slope and intercept for a regression, you should always report
R? s0 that readers can judge for themselves how successful the regression is at
fitting the data. Statistics is about variation, and R? measures the success of the
regression model in terms of the fraction of the variation of y accounted for by the
regression. R? is the first part of a regression that many people look at because,
along with the scatterplot, it tells whether the regression model is even worth
thinking about.

Regression Assumptions and Conditions

Make a Picture

To use regression, first check
that

e the scatterplot is straight
enough.

After you've fit the
regression, make a residual
plot and check that there are
no obvious patterns. In
particular, check that

e there are no obvious
bends,

e the spread of the
residuals is about the
same throughout, and

e there are no obvious
outliers.

The linear regression model is perhaps the most widely used model in all of
Statistics. It has everything we could want in a model: two easily estimated pa-
rameters, a meaningful measure of how well the model fits the data, and the abil-
ity to predict new values. It even provides a self-check in plots of the residuals to
help us avoid silly mistakes.

Like all models, though, linear models don’t apply all the time, so we’d better
think about whether they’re reasonable. It makes no sense to make a scatterplot of
categorical variables, and even less to perform a regression on them. Always check
the Quantitative Variables Condition to be sure a regression is appropriate.

The linear model makes several assumptions. First, and foremost, is the
Linearity Assumption—that the relationship between the variables is, in fact, lin-
ear. You can’t verify an assumption, but you can check the associated condition. A
quick look at the scatterplot will help you check the Straight Enough Condition.
You don’t need a perfectly straight plot, but it must be straight enough for the lin-
ear model to make sense. If you try to model a curved relationship with a straight
line, you'll usually get exactly what you deserve.

If the scatterplot is not straight enough, stop here. You can’t use a linear model
for any two variables, even if they are related. They must have a linear association,
or the model won’t mean a thing.

For the standard deviation of the residuals to summarize the scatter, all the
residuals should share the same spread, so we need the Equal Variance Assump-
tion. The Does the Plot Thicken? Condition checks for changing spread in the
scatterplot.

Check the Outlier Condition. Outlying points can dramatically change a re-
gression model. Outliers can even change the sign of the slope, misleading us
about the underlying relationship between the variables. We’ll see examples in
the next chapter.

Even though we’ve checked the conditions in the scatterplot of the data, a
scatterplot of the residuals can sometimes help us see any violations even more

10 [f you see an R2 of 100%, it’s a good idea to figure out what happened. You may have dis-
covered a new law of Physics, but it’s much more likely that you accidentally regressed
two variables that measure the same thing.
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clearly. And examining the residuals is the best way to look for additional pat-
terns and interesting quirks in the data.

A Tale of Two Regressions

Protein Fat
x=172g y=235¢g
sy=140g sy =164¢g

r=0.83

Regression slopes may not behave exactly the way you’d expect at first. Our re-
gression model for the Burger King sandwiches was fat = 6.8 + 0.97 protein. That
equation allowed us to estimate that a sandwich with 30 grams of protein would
have 35.9 grams of fat. Suppose, though, that we knew the fat content and wanted
to predict the amount of protein. It might seem natural to think that by solving
our equation for protein we’'d get a model for predicting protein from fat. But that
doesn’t work.

Our original modelis § = by + byx, but the new one needs to evaluate an X
based on a value of y. There’s no y in our original model, only j, and that makes
all the difference. Our model doesn’t fit the BK data values perfectly, and the least
squares criterion focuses on the vertical errors the model makes in using to model
y—not on horizontal errors related to x.

A quick look at the equations reveals why. Simply solving our equation for x
would give a new line whose slope is the reciprocal of ours. To model y in terms

of x, our slope is by = .. To model x in terms of y, we’d need to use the slope
s
by = 5. Notice that it's not the reciprocal of ours.

If we want to predict protein from fat, we need to create that model. The slope
. (0.83)(14.0) . .
isby = ——1 — = 0.709 grams of protein per gram of fat. The equation turns out

to be protemn = 0.55 + 0.709 fat, so we’d predict that a sandwich with 35.9 grams
of fat should have 26.0 grams of protein—not the 30 grams that we used in the
first equation.

Moral of the story: Think. (Where have you heard that before?) Decide which
variable you want to use (x) to predict values for the other (y). Then find the
model that does that. If, later, you want to make predictions in the other direction,
you'll need to start over and create the other model from scratch.

report the W’s.

Even if you hit the fast food joints for lunch, you should have a good breakfast. Nutritionists, con-
cerned about”empty calories”in breakfast cereals, recorded facts about 77 cereals, including their
Calories per serving and Sugar content (in grams).

Question: How are calories and sugar content related in breakfast cereals?

Plan State the problem and determine | am interested in the relationship between
the role of the variables. sugar content and calories in cereals. Ill use

Sugar to estimate Calories.

Variables Name the variables and V' Quantitative Variables Condition: | have

two quantitative variables, Calories and
Sugar content per serving, measured on
77 brezkfast cereals. The units of meas-
urement are calories and grams of sugar,
respectively.
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Check the conditions for a regression by
making a picture. Never fit a regression
without looking at the scatterplot first.

Mechanics If there are no clear viola-
tions of the conditions, fit a straight line
model of the form §j = by + byx to the
data. Summary statistics give the build-
ing blocks of the calculation.

Find the slope.

Find the intercept.

Write the equation, using meaningful
variable names.

State the value of R?.

Conclusion Describe what the model
says in words and numbers. Be sure to use
the names of the variables and their units.

The key to interpreting a regression model
is to start with the phrase “b; y-units per
x-unit,” substituting the estimated value
of the slope for by and the names of the
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V' Outlier Condition: There are no obvious
outliers or groups.

V' The Straight Enough Condition is sztisfied;
I will fit a regression model to these data.

V' The Does the Plot Thicken? Condition is
satisfied. The spread around the line looks
about the same throughout.

Calories
y = 107.0 calories

s, = 19.5 calories

Sugar
x = 7.0 grams

S = 44 grams

Correlation

r = 0564

, 0.564(19.5)
s 4.4

= 2.50 calories per gram of sugar.

bo =y — bix = 107 — 250(7) = 895 calories.

So the least squares line is

V=895 + 250 xor
—_—
Calories = 9.5 + 250 Sugar.

Squaring the correlation gives

R? = 0564 = 0.318 or 31.8%.

The scatterplot shows a positive, linear rela-
tionship and no outliers. The slope of the least
squares regression line suggests that cereals
have about 2.50 Calories more per additional
gram of Sugar.
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respective units. The intercept is then a
starting or base value.

R? gives the fraction of the variability of y
accounted for by the linear regression
model.

Find the standard deviation of the residu-
als, s,, and compare it to the original s,,.

Check Again Even though we looked at
the scatterplot before fitting a regression
model, a plot of the residuals is essential
to any regression analysis because it is the
best check for additional patterns and in-
teresting quirks in the data.

Residuals plots. See how the
residuals plot changes as you drag
points around in a scatterplot.

A Tale of Two Regressions

The intercept predicte that sugar-free cereals
would average about 9.5 calories.

The R? says that 31.8% of the variability in
Calories is accounted for by variation in Sugar
content.

5, = 16.2 calories. That's smaller than the
original SD of 19.5, but still fairly large.
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The residuals show a horizontal direction, a
shapeless form, and roughly equal scatter for
all predicted values. The linear model appears
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to be appropriate.

Regression lines and residuals plots

+hd VR

By now you will not be surprised to learn that your calculator can do it all: scat-
terplot, regression line, and residuals plot. Let’s try it using the Arizona State
tuition data from the last chapter. (TI Tips, p. 149) You should still have that
saved in lists named %R and TIJIT. First, recreate the scatterplot.

1. Find the equation of the regression line.

Actually, you already found the line when you used the calculator to get the
correlation. But this time we’ll be a little fancier so that we can display the line
on our scatterplot. We want to tell the calculator to do the regression and save
the equation of the model as a graphing variable.

e Under=1H| LHLL chooseL1nkKe'dta+lo42.

 Specify that x and y are %K and |1 |, as before, but . . .

* Now add a comma and one more specification. Press WHKEE, go to the
%=LHF>= menu, choose 1 Fernct 1aom, and finally(!) choose ¥ 1.

e Hit EMTER.

There’s the equation. The calculator tells you that the regression line is
tuit = 6440 + 326 year. Can you explain what the slope and y-intercept mean?

2. Add the line to the plot.
When you entered this command, the calculator automatically saved the equa-
tion as '¥'1. Just hit GRAFPH to see the line drawn across your scatterplot.
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3. Check the residuals.

Remember, you are not finished until you check to see if a linear model is ap-
propriate. That means you need to see if the residuals appear to be randomly
distributed. To do that, you need to look at the residuals plot.

This is made easy by the fact that the calculator has already placed the residu-
als in a list named RESI0. Want to see them? Go to STAT EDIT and look
through the lists. (If RESID is not already there, go to the first blank list and
import the name RESI0 from your LIST HAMES menu. The residuals should
appear.) Every time you have the calculator compute a regression analysis, it
will automatically save this list of residuals for you.

4. Now create the residuals plot.

e Setup STAT FLOTF1ot2 as a scatterplot withk1i=t:%FE and
Y1ist:RESID.

* Before you try to see the plot, go to the 'Y= screen. By moving the cursor
around and hitting ENTER in the appropriate places you can turn off the re-
gression lineand Flot1, and turn onFliotZ.

¢ SoomStat willnow graph the residuals plot.

Uh-oh! See the curve? The residuals are high at both ends, low in the middle.
Looks like a linear model may not be appropriate after all. Notice that the residu-
als plot makes the curvature much clearer than the original scatterplot did.

Moral: Always check the residuals plot!

So a linear model might not be appropriate here. What now? The next two
chapters provide techniques for dealing with data like these.

Reality Check: Is the Regression Reasonable?

Adjective, Noun, or Verh
You may see the term
regression used in different
ways. There are many ways
to fit a line to data, but the
term “regression line” or
“regression” without any
other qualifiers always means
least squares. People also use
regression as a verb when
they speak of regressing a
y-variable on an x-variable to
mean fitting a linear model.

Statistics don’t come out of nowhere. They are based on data. The results of a statis-
tical analysis should reinforce your common sense, not fly in its face. If the results
are surprising, then either you've learned something new about the world or your
analysis is wrong.

Whenever you perform a regression, think about the coefficients and ask
whether they make sense. Is a slope of 2.5 calories per gram of sugar reasonable?
That’s hard to say right off. We know from the summary statistics that a typical
cereal has about 100 calories and 7 grams of sugar. A gram of sugar contributes
some calories (actually, 4, but you don’t need to know that), so calories should go
up with increasing sugar. The direction of the slope seems right.

To see if the size of the slope is reasonable, a useful trick is to consider its order
of magnitude. We'll start by asking if deflating the slope by a factor of 10 seems
reasonable. Is 0.25 calories per gram of sugar enough? The 7 grams of sugar found
in the average cereal would contribute less than 2 calories. That seems too small.

Now let’s try inflating the slope by a factor of 10. Is 25 calories per gram rea-
sonable? Then the average cereal would have 175 calories from sugar alone. The
average cereal has only 100 calories per serving, though, so that slope seems too big.

We have tried inflating the slope by a factor of 10 and deflating it by 10 and
found both to be unreasonable. So, like Goldilocks, we're left with the value in the
middle that’s just right. And an increase of 2.5 calories per gram of sugar is cer-
tainly plausible.

The small effort of asking yourself whether the regression equation is plausi-
ble is repaid whenever you catch errors or avoid saying something silly or absurd
about the data. It’s too easy to take something that comes out of a computer at
face value and assume that it makes sense.

Always be skeptical and ask yourself if the answer is reasonable.
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WHAT CAN GO WRONG?

There are many ways in which data that appear at first to be good candidates for regres-

sion analysis may be unsuitable. And there are ways that people use regression that can

lead them astray. Here’s an overview of the most common problems. We’ll discuss them

atlength in the next chapter.

> Don't fit a straight line to a nonlinear relationship. Linear regression is suited only to rela-
tionships that are, well, linear. Fortunately, we can often improve the linearity easily
by using re-expression. We'll come back to that topic in Chapter 10.

> Beware of extraordinary points. Data points can be extraordinary in a regression in two
ways: They can have y-values that stand off from the linear pattern suggested by
the bulk of the data, or extreme x-values. Both kinds of extraordinary points require
attention.

> Don’t extrapolate beyond the data. A linear model will often do a reasonable job of sum-
marizing a relationship in the narrow range of observed x-values. Once we have a
working model for the relationship, it's tempting to use it. But beware of predicting
y-values for x-values that lie outside the range of the original data. The model may
no longer hold there, so such extrapolations too far from the data are dangerous.

> Don’t infer that x causes yjust because there is a good linear model for their relationship.
When two variables are strongly correlated, it is often tempting to assume a causal
relationship between them. Putting a regression line on a scatterplot tempts us even
further, but it doesn’t make the assumption of causation any more valid. For exam-
ple, our regression model predicting hurricane wind speeds from the central pres-
sure was reasonably successful, but the relationship is very complex. It is reasonable
to say that low central pressure at the eye is responsible for the high winds because
it draws moist, warm air into the center of the storm, where it swirls around, gener-
ating the winds. But as is often the case, things aren’t quite that simple. The winds
themselves also contribute to lowering the pressure at the center of the storm as it
becomes a hurricane. Understanding causation requires far more work than just
finding a correlation or modeling a relationship.

R? does not mean that > Don’t choose a model based on B2 alone. Although R? measures the strength of the linear

protein accounts for 69% of association, a high R? does not demonstrate the appropriateness of the regression. A

the fatin a BK food item. It is single outlier, or data that separate into two groups rather than a single cloud of

the variation in fat content points, can make R? seem quite large when, in fact, the linear regression model is

that is accounted for by the simply inappropriate. Conversely, a low R? value may be due to a single outlier as

linear model. well. It may be that most of the data fall roughly along a straight line, with the ex-
ception of a single point. Always look at the scatterplot. M)

CONNECTIONS

We’ve talked about the importance of models before, but have seen only the Normal model as an
example. The linear model is one of the most important models in Statistics. Chapter 7 talked about
the assignment of variables to the y- and x-axes. That didn’t matter to correlation, but it does matter
to regression because y is predicted by x in the regression model.

The connection of R to correlation is obvious, although it may not be immediately clear that just
by squaring the correlation we can learn the fraction of the variability of y accounted for by a re-
gression on x. We'll return to this in subsequent chapters.

We made a big fuss about knowing the units of your quantitative variables. We didn’t need units
for correlation, but without the units we can’t define the slope of a regression. A regression makes
no sense if you don’t know the Who, the What, and the Units of both your variables.

We’ve summed squared deviations before when we computed the standard deviation and vari-
ance. That’s not coincidental. They are closely connected to regression.

When we first talked about models, we noted that deviations away from a model were often in-
teresting. Now we have a formal definition of these deviations as residuals.
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WHAT HAVE WE LEARNED?

We've learned that when the relationship between quantitative variables is fairly straight, a linear

model can help summarize that relationship and give us insights about it:

» The regression (best fit) line doesn’t pass through all the points, but it is the best compromise in
the sense that the sum of squares of the residuals is the smallest possible.

We've learned several things the correlation, r, tells us about the regression:
» The slope of the line is based on the correlation, adjusted for the units of x and y:

rSy
by = —
Sx

We've learned to interpret that slope in context:

» For each SD of x that we are away from the x mean, we expect to be r SDs of y away from the
y mean.

» Because r is always between —1 and +1, each predicted y is fewer SDs away from its mean
than the corresponding x was, a phenomenon called regression to the mean.

» The square of the correlation coefficient, R?, gives us the fraction of the variation of the re-
sponse accounted for by the regression model. The remaining 1 — R of the variation is left in
the residuals.

The residuals also reveal how well the model works:

» If a plot of residuals against predicted values shows a pattern, we should re-examine the data to
see why.
» The standard deviation of the residuals, s,, quantifies the amount of scatter around the line.

Of course, the linear model makes no sense unless the Linearity Assumption is satisfied. We check
the Straight Enough Condition and Outlier Condition with a scatterplot, as we did for correlation,
and also with a plot of residuals against either the x or the predicted values. For the standard devia-
tion of the residuals to make sense as a summary, we have to make the Equal Variance Assumption.
We check it by looking at both the original scatterplot and the residual plot for the Does the Plot

Thicken? Condition.
Terms
Model 172. An equation or formula that simplifies and represents reality.
Linear model 172. Alinear model is an equation of a line. To interpret a linear model, we need to know the vari-
ables (along with their W’s) and their units.

Predicted value 172. The value of j found for a given x-value in the data. A predicted value is found by substituting
the x-value in the regression equation. The predicted values are the values on the fitted line; the
points (x, ) all lie exactly on the fitted line.

Residuals 172. Residuals are the differences between data values and the corresponding values predicted by
the regression model—or, more generally, values predicted by any model.
Residual = observed value — predicted value =e =y —
Least squares 172. The least squares criterion specifies the unique line that minimizes the variance of the residu-
als or, equivalently, the sum of the squared residuals.

Regression to the mean 174. Because the correlation is always less than 1.0 in magnitude, each predicted 7 tends to be
fewer standard deviations from its mean than its corresponding x was from its mean. This is called
regression to the mean.

Regression line 174. The particular linear equation

Line of best fit ¥ =by + byx

that satisfies the least squares criterion is called the least squares regression line. Casually, we often
just call it the regression line, or the line of best fit.
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176. The slope, by, gives a value in “y-units per x-unit.” Changes of one unit in x are associated
with changes of by units in predicted values of y. The slope can be found by

rsy
by ==
g.\‘

176. The intercept, by, gives a starting value in y-units. It's the j-value when x is 0. You can find it
from by = 7 — biX.

2
181. The standard deviation of the residuals is found by s, = 4 /2%. When the assumptions and
conditions are met, the residuals can be well described by using this standard deviation and the
68-95-99.7 Rule.

» 182. R?is the square of the correlation between y and x.

» R? gives the fraction of the variability of y accounted for by the least squares linear regression
on x.

» RZis an overall measure of how successful the regression is in linearly relating y to x.

» Be able to identify response (y) and explanatory (x) variables in context.
» Understand how a linear equation summarizes the relationship between two variables.

» Recognize when a regression should be used to summarize a linear relationship between two
quantitative variables.

» Be able to judge whether the slope of a regression makes sense.

» Know how to examine your data for violations of the Straight Enough Condition that would make
it inappropriate to compute a regression.

» Understand that the least squares slope is easily affected by extreme values.

» Know that residuals are the differences between the data values and the corresponding values
predicted by the line and that the /east squares criterion finds the line that minimizes the sum
of the squared residuals.

» Know how to use a plot of residuals against predicted values to check the Straight Enough Con-
dition, the Does the Plot Thicken? Condition, and the Outlier Condition.

» Understand that the standard deviation of the residuals, s., measures variability around the line.
A large s, means the points are widely scattered; a small s, means they lie close to the line.

» Know how to find a regression equation from the summary statistics for each variable and the
correlation between the variables.

» Know how to find a regression equation using your statistics software and how to find the slope
and intercept values in the regression output table.

» Know how to use regression to predict a value of y for a given x.
» Know how to compute the residual for each data value and how to display the residuals.

» Be able to write a sentence explaining what a linear equation says about the relationship be-
tween y and x, basing it on the fact that the slope is given in y-units per x-unit.

» Understand how the correlation coefficient and the regression slope are related. Know how R?
describes how much of the variation in y is accounted for by its linear relationship with x.

» Be able to describe a prediction made from a regression equation, relating the predicted value to
the specified x-value.

» Be able to write a sentence interpreting s, as representing typical errors in predictions—the
amounts by which actual y-values differ from the j’s estimated by the model.
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All statistice packages make a table of results for a regression. These tables may differ slightly from one
package to another, but all are essentially the same—and all include much more than we need to know for now.
Every computer regression table includes a section that looks something like this:

R squared The “dependent,” response, or

Standard y-variable
dev of
residuals | Dependent va\iab]e is: Total Fa/t
(s,) R squared = 69.0%
AS Finding Least Squares s = 9.277
Lines. We almost always use L. .
technology to find regreyssions, Variable Coefficient /SE(Coeff) t-ratio P-value
Practice now—just in time for Intercept 6.83077 2.664 2.56 0.0158
the exercises. Protein 0&371381 0.1209 8.04 =0.0001

\

we'll deal with all of
these later i the book.
You may igwnore them
for now.

The “indlependent,” predictor, or The slope

x-variable The intercept

The slope and intercept coefficient are given in a table such as this one. Usually the slope is labeled with the
name of the x-variable, and the intercept is labeled “Intercept” or “Constant.” So the regression equation shown
here is

Fat = 6.83077 + 0.97138Protein.

It is not unusual for statistice packages to give many more digits of the estimated slope and intercept than
could possibly be estimated from the data. (The original data were reported to the nearest gram.) Ordinarily, you
should round most of the reported numbers to one digit more than the precision of the data, and the slope to

two. We will learn about the other numbers in the regression table later in the book. For now, all you need to be

able to do is find the coefficients, the s, and the R? value.

1. Cereals.

EXERCISES

tant source of fiber in their diets. Cereals also contain
potassium, a mineral shown to be associated with main-
taining a healthy blood pressure. An analysis of the

amount of fiber (in grams) and the potassium content (in 4

milligrams) in servings of 77 breakfast cereals produced
the regression model Dotassium = 38 + 27Fiber. If your
cereal provides 9 grams of fiber per serving, how much
potassium does the model estimate you will get?

. Horsepower. In Chapter 7’s Exercise 33 we examined
the relationship between the fuel economy (mpg) and
horsepower for 15 models of cars. Further analysis pro-
duces the regression model mpg = 46.87 — 0.084HP. If

the car you are thinking of buying has a 200-horsepower 6.

engine, what does this model suggest your gas mileage
would be?

For many people, breakfast cereal is an impor- 3.

. Horsepower, again.

. Another bowl.

More cereal. Exercise 1 describes a regression model
that estimates a cereal’s potassium content from the
amount of fiber it contains. In this context, what does it
mean to say that a cereal has a negative residual?

Exercise 2 describes a regression
model that uses a car’s horsepower to estimate its fuel
economy. In this context, what does it mean to say that a
certain car has a positive residual?

In Exercise 1, the regression model
m = 38 + 27Fiber relates fiber (in grams) and
potassium content (in milligrams) in servings of breakfast
cereals. Explain what the slope means.

More horsepower. In Exercise 2, the regression model
mpg = 46.87 — 0.084HP relates cars’ horsepower to their
fuel economy (in mpg). Explain what the slope means.



7. Cereal again. The correlation between a cereal's iber
and potassium contents is 0.903. What fraction of the
variability in potassium is accounted for by the amount
of fiber that servings contain?

8. Another car. The correlation between a car’s horse-
power and ifs fuel economy (in mpg) is r 69. What
fraction of the variability in fuel economy is accounted
for by the horsepower?

9. Last bowl!
potassium content (in mi
fiber (in grams) in breakfast cereals, s, =
this context what that means.

10. Last tank! For Exercise 2's regression model predicting
fuel economy (in mpg) from the car’s horsepower,
< = 3.287. Explain in this context what that means.

11. Residuals. Tell what each of the residual plots below
indicates about the appropriateness of the linear model
that was fit to the data

For Exercise s regression model predicting
rams) from the amount of
30.77. Explain in

12. Residuals. Tell what cach of the residual plots below
indicates about the appropriateness of the linear model
that was fit to the data

13. What slope? If you create a regression model for predict-
ing the Weight of a car (in pounds) from s Lengt): in feet),
is the slope most likely to be 3, 30, 300, or 30007 Explain.

14. What slope? If you create a regression model for esti-
‘mating the Height of a pine free (in feet) based on the
Circunference of its trunk (in inches), is the slope most
likely to be 0.1, 1, 10, or 1007 Explain

15. Real estate.  Arandom sample of records of sales of
homes from Feb. 15 to Apr. 30, 1993, from the files main-
tained by the Albuquerque Board of Realtors gives the
Price and Size (in square feet) of 117 homes. A regression
to predict Price (in thousands of dollars) from Size has an

Resquared of 71.4%. The residuals plot indicated that a

linear model is appropriate.

2) What are the variables and units in this regression?

b) What units does the slope have?

) Do you think the slope is positive or negative? Explain

@ 16. Roller coaster. People who responded to a July 2004

Discovery Channel poll named the 10 best roller coasters
in the United States. A table in the last chapler’s exercises
shows the length of the initial drop (in feet) and the dura-
tion of the ride (in seconds). A regression to predict
Duration from Drop has R = 12.4%

@) Whatar the variables and it n this regresion?

b) What units does the slope have’

9 Do you think the slope Nposmve or negative? Explain

(1]

(1]
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17. Real estate again. The regression of Price on Size of
homes in Albuquerque had R* = 71.4%, as described in

Exercise 15. Wrile a sentence (in context, of course) sum-

‘marizing what the R* says about this regression.

. Coasters agai Exeruse 16 examined the association
between the Duration of a roller coaster ride and the
height of its initial Drop, reporting that R = 12.4%. Write
a sentence (in context, of course) summarizing what the

R? says about this regression.

. Real estate redux. The regression of Price on Size of
homes in Albuquerque had R* = 71.4%, as described in
Exercise 15.

2) Whatis the correlation between Size and Price?
Explain why you chose the sign (+ or ) you did.
What would you predict about the Price of 2 home 1
standard deviation above average in Size?

What would you predict about the Prce of a home 2

standard deviations below average in Size’

b)
o

. Another ride. The regression of Duratiort of a roller
coaster ride on the height of its initial Drop, described in
Exercise 16, had R* = 12.4%.

2) What s the correlation between Drop and Duration?
Explain why you chose the sign (+ or ) you did.

b) What would you predict about the Duration of the ride
on a coaster whose initial Drop was 1 standard devia-
tion below the mean Drop?

©) What would you predict about the Duration of the ride

m a coaster whaose initial Drop was 3 standard devia-
tions above the mean Drop?

B

. More real estate. Consider the Albuquerque home
sales from Exercise 15 again. The regression analysis
gives the model Price = 47.82 + 0061 Size.

a) Explain what the slope of the line says about housing
prices and house size.

) What pice would you predit or a 000-square-foot
house in this mark

©) A real estate agent shov.s apotential buyer a 1200-
square-foot home, saving that the asking price is $6000
leu than what one would expect to pay for a house of

his size. What is the asking price, and what s the

sa\m called?

Last ride. Consider the roller coasters described in

Exercise 16 again. The regression analysis gives the model

Duration = 91.03 + 0.242 Drap.

) Explain what the slope of the line says about how long a

roller coaster ride may last and the height of the coaster.

b) Anew roller coaster advertises an initial drop of 200

feet. How long would you predict the rides last?

<) Another coaster with a 150-foot initial drop advertises

a 2-minute ride. Is this longer or shorter than you'd
expect? By how much? What's that called?

. Misinterpretations. A Biology student who created a
regression model to use a bird's Height when perched for
predicting its Wingspar made these two statements. As-
suming the calculations were done correctly, explain
what is wrong with each interpretation.

) My R? of 93% shows that this linear model is
appropriate.
b) Abird 10 inches tall will have a wingspan of 17 inches.

2.




194 CHAPTER 8

24,

25.

26.

27.

Linear Regression

More misinterpretations. A Sociology student inves-

tigated the association between a country’s Literacy Rate

and Life Expectancy, then drew the conclusions listed be-

low. Explain why each statement is incorrect. (Assume

that all the calculations were done properly.)

a) The Literacy Rate determines 64% of the Life Expectancy
for a country.

b) Thesslope of the line shows that an increase of 5% in
Literacy Rate will produce a 2-year improvement in
Life Expectancy.

ESP. People who claim to “have ESP” participate in a

screening test in which they have to guess which of sev-

eral images someone is thinking of. You and a friend both

took the test. You scored 2 standard deviations above the

mean, and your friend scored 1 standard deviation below

the mean. The researchers offer everyone the opportunity

to take a retest.

a) Should you choose to take this retest? Explain.

b) Now explain to your friend what his decision should
be and why.

SI jinx. Players inany sport who are having great sea-
sons, turning in performances that are much better than
anyone might have anticipated, often are pictured on the
cover of Sports Illustrated. Frequently, their performances
then falter somewhat, leading some athletes to believe in a
“Sports Illustrated jinx.” Similarly, it is common for phe-
nomenal rookies to have less stellar second seasons—the
so-called “sophomore slump.” While fans, athletes, and
analysts have proposed many theories about what leads
to such declines, a statistician might offer a simpler (statis-
tical) explanation. Explain.

Cigarettes. Is the nicotine content of a cigarette related
to the “tars”? A collection of data (in milligrams) on 29
cigarettes produced the scatterplot, residuals plot, and re-
gression analysis shown:

.
OMWL o o o e e
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03 0.6 0.9 12
Predicted

Dependent variable is: nicotine
R squared = 82.4%

Variable Coefficient
Constant 0.154030
Tar 0.065052

28.

29.

30.

a) Do you think a linear model is appropriate here?
Explain.
b) Explain the meaning of R? in this context.

Attendance 2006. In the previous chapter you looked at
the relationship between the number of wins by American
League baseball teams and the average attendance at their
home games for the 2006 season. Here are the scatterplot,
the residuals plot, and part of the regression analysis:
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F } t } }
60.0 70.0 80.0 90.0  100.0
Wins
18,000 +
13,000 + o
§ 8000 + .
g 3000 - . ., ® .
2000 14 o
° °
=7000 +
L]
[ ]
t t t t
23500 28,500 33,500 38,500
Predicted
Dependent variable is: Home Attendance
R squared = 48.5%
Variable Coefficient
Constant -14364.5
Wins 538.915
a) Do you think a linear model is appropriate here?
Explain.

b) Interpret the meaning of R? in this context.

¢) Do the residuals show any pattern worth remarking on?

d) The point in the upper right of the plots is the New
York Yankees. What can you say about the residual for
the Yankees?

Another cigarette. Consider again the regression of
Nicotine content on Tar (both in milligrams) for the ciga-
rettes examined in Exercise 27.

a) What is the correlation between Tar and Nicotine?

b) What would you predict about the average Nicotine
content of cigarettes that are 2 standard deviations be-
low average in Tar content?

c) Ifa cigarette is 1 standard deviation above average in
Nicotine content, what do you suspect is true about its
Tar content?

Second inning 2006. Consider again the regression of
Average Attendance on Wins for the baseball teams exam-
ined in Exercise 28.
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33.

a) What is the correlation between Wins and Average
Attendance?

b) What would you predict about the Average Attendance
for a team that is 2 standard deviations above average
in Wins?

c) Ifateamis 1standard deviation below average in at-
tendance, what would you predict about the number
of games the team has won?

Last cigarette. Take another look at the regression

analysis of tar and nicotine content of the cigarettes in

Exercise 27.

a) Write the equation of the regression line.

b) Estimate the Nicotine content of cigarettes with 4 mil-

ligrams of Tar.

Interpret the meaning of the slope of the regression

line in this context.

d) What does the y-intercept mean?

e) Ifanew brand of cigarette contains 7 milligrams of tar
and a nicotine level whose residual is -0.5 mg, what is
the nicotine content?

C

NeX

Last inning 2006. Refer again to the regression analy-
sis for average attendance and games won by American
League baseball teams, seen in Exercise 28.

a) Write the equation of the regression line.

b) Estimate the Average Attendance for a team with 50
Wins.

Interpret the meaning of the slope of the regression
line in this context.

d) In general, what would a negative residual mean in
this context?

The St. Louis Cardinals, the 2006 World Champions,
are not included in these data because they are a
National League team. During the 2006 regular sea-
son, the Cardinals won 83 games and averaged 42,588
fans at their home games. Calculate the residual for
this team, and explain what it means.

C

-

e

N

Income and housing revisited. In Chapter?7,

Exercise 31, we learned that the Office of Federal Housing
Enterprise Oversight (OFHEO) collects data on various
aspects of housing costs around the United States. Here’s
a scatterplot (by state) of the Housing Cost Index (HCI)
versus the Median Family Income (MFI) for the 50 states.
The correlation is ¥ = 0.65. The mean HCl is 338.2, witha
standard deviation of 116.55. The mean MFI is $46,234,
with a standard deviation of $7072.47.
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a) Is a regression analysis appropriate? Explain.

b) What is the equation that predicts Housing Cost Index
from median family income?

For a state with MFI = $44,993, what would be the
predicted HCI?

d) Washington, DC, has an MFI of $44,993 and an HCI
of 548.02. How far off is the prediction in b) from the
actual HCI?

If we standardized both variables, what would be the
regression equation that predicts standardized HCI
from standardized MFI?

If we standardized both variables, what would be the
regression equation that predicts standardized MFI
from standardized HCI?

Interest rates and mortgages again. In Chapter?7,
Exercise 32, we saw a plot of total mortgages in the
United States (in millions of 2005 dollars) versus the in-
terest rate at various times over the past 26 years. The
correlation is » = —0.84. The mean mortgage amount is
$151.9 million and the mean interest rate is 8.88%. The
standard deviations are $23.86 million for mortgage
amounts and 2.58% for the interest rates.
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a) Is a regression model appropriate for predicting mort-
gage amount from interest rates? Explain.

b) What is the equation that predicts mortgage amount

from interest rates?

What would you predict the mortgage amount would

be if the interest rates climbed to 20%?

d) Do you have any reservations about your prediction

in part c?

If we standardized both variables, what would be the

regression equation that predicts standardized mort-

gage amount from standardized interest rates?

f) If we standardized both variables, what would be the
regression equation that predicts standardized interest
rates from standardized mortgage amount?

Online clothes. An online clothing retailer keeps
track of its customers’ purchases. For those customers
who signed up for the company’s credit card, the com-
pany also has information on the customer’s Age and
Income. A random sample of 500 of these customers
shows the following scatterplot of Total Yearly Purchases
by Age:

C
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1400
1200
1000
800
600
400
200

Total Yearly Purchases (dollars)

20 30 40 50 60
Age

The correlation between Total Yearly Purchases and Age is
r = 0.037. Summary statistics for the two variables are:

‘ Mean ‘ SD
Age ‘ 29.67 yrs | 8.51 yrs
Total Yearly Purchase $572.52 | $253.62

a) What is the linear regression equation for predicting
Total Yearly Purchase from Age?

b) Do the assumptions and conditions for regression
appear to be met?

c) What is the predicted average Total Yearly Purchase for
an 18-year-old? For a 50-year-old?

d) What percent of the variability in Total Yearly Purchases
is accounted for by this model?

e) Do you think the regression might be a useful one for
the company? Explain.

Online clothes II. For the online clothing retailer dis-
cussed in the previous problem, the scatterplot of Total
Yearly Purchases by Income shows

1400
1200
1000
800
600
400
200
0

Total Yearly Purchases (dollars)

20 30 40 5 60 70 80

Income
(thousands of dollars)

The correlation between Total Yearly Purchases and Income
is 0.722. Summary statistics for the two variables are:

‘ Mean ‘ SD

Income ‘

$50,343.40 ‘ $16,952.50
Total Yearly Purchase

$572.52 $253.62

a) What is the linear regression equation for predicting
Total Yearly Purchase from Income?

b) Do the assumptions and conditions for regression
appear to be met?

37.

38.

c) What is the predicted average Total Yearly Purchase for
someone with a yearly Income of $20,000? For some-
one with an annual Incone of $80,000?

d) What percent of the variability in Total Yearly Purchases
is accounted for by this model?

e) Do you think the regression might be a useful one for
the company? Comment.

SAT scores. The SAT is a test often used as part of an
application to college. SAT scores are between 200 and
800, but have no units. Tests are given in both Math and
Verbal areas. Doing the SAT-Math problems also involves
the ability to read and understand the questions, but can
a person’s verbal score be used to predict the math score?
Verbal and math SAT scores of a high school graduating
class are displayed in the scatterplot, with the regression
line added.

800+ . L
700
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Math SAT

500+

400 1

t t
400 500 600 700 800
Verbal SAT

a) Describe the relationship.

b) Are there any students whose scores do not seem to fit
the overall pattern?

c) For these data, r = 0.685. Interpret this statistic.

d) These verbal scores averaged 596.3, with a standard
deviation of 99.5, and the math scores averaged 612.2,
with a standard deviation of 96.1. Write the equation
of the regression line.

e) Interpret the slope of this line.

f) Predict the math score of a student with a verbal score

of 500.

Every year some student scores a perfect 1600. Based

on this model, what would be that student’s Math

score residual?

-

g

Success in college. Colleges use SAT scores in the ad-

missions process because they believe these scores pro-

vide some insight into how a high school student will

perform at the college level. Suppose the entering fresh-

men at a certain college have mean combined SAT Scores

of 1833, with a standard deviation of 123. In the first se-

mester these students attained a mean GPA of 2.66, with a

standard deviation of 0.56. A scatterplot showed the asso-

ciation to be reasonably linear, and the correlation be-

tween SAT score and GPA was 0.47.

a) Write the equation of the regression line.

b) Explain what the y-intercept of the regression line
indicates.

c) Interpret the slope of the regression line.

d) Predict the GPA of a freshman who scored a combined
2100.
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e) Based upon these statistics, how effective do you think
SAT scores would be in predicting academic success
during the first semester of the freshman year at this
college? Explain.

f) Asastudent, would you rather have a positive or a
negative residual in this context? Explain.

SAT, take 2. Suppose we wanted to use SAT math

scores to estimate verbal scores based on the information

in Exercise 37.

a) Whatis the correlation?

b) Write the equation of the line of regression predicting
verbal scores from math scores.

¢) Ingeneral, what would a positive residual mean in
this context?

d) A person tells you her math score was 500. Predict her
verbal score.

e) Using that predicted verbal score and the equation
you created in Exercise 37, predict her math score.

f) Why doesn’t the result in part e) come out to 500?

Success, part 2. Based on the statistics for college
freshmen given in Exercise 38, what SAT score might be
expected among freshmen who attained a first-semester
GPA of 3.0?

Used cars 2007. Classified ads in the Ithaca Journal
offered several used Toyota Corollas for sale. Listed
below are the ages of the cars and the advertised
prices.

Age (yr)  Price Advertised (§)

13,990
13,495
12,999
9500
10,495
8995
9495
6999
6950
7850
6999
5995
4950
4495
2850
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a) Make a scatterplot for these data.

b) Describe the association between Age and Price of a
used Corolla.

¢) Doyou think a linear model is appropriate?

d) Computer software says that R? = 94.4%. What is the
correlation between Age and Price?

e) Explain the meaning of R? in this context.

f) Why doesn’t this model explain 100% of the variabil-
ity in the price of a used Corolla?

Drug abuse. In the exercises of the last chapter you ex-

amined results of a survey conducted in the United States

and 10 countries of Western Europe to determine the

44. Birthrates 2005.

Exercises 197

percentage of teenagers who had used marijuana and
other drugs. Below is the scatterplot. Summary statistics
showed that the mean percent that had used marijuana
was 23.9%, with a standard deviation of 15.6%. An aver-
age of 11.6% of teens had used other drugs, with a stan-
dard deviation of 10.2%.
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a) Do you think a linear model is appropriate? Explain.

b) For this regression, R? is 87.3%. Interpret this statistic
in this context.

c) Write the equation you would use to estimate the
percentage of teens who use other drugs from the
percentage who have used marijuana.

d) Explain in context what the slope of this line means.

e) Do these results confirm that marijuana is a “gateway
drug,” that is, that marijuana use leads to the use of
other drugs?

43. More used cars 2007. Use the advertised prices for

Toyota Corollas given in Exercise 41 to create a linear
model for the relationship between a car’s Age and its
Price.

a) Find the equation of the regression line.

b) Explain the meaning of the slope of the line.

c) Explain the meaning of the y-intercept of the line.

d) If you want to sell a 7-year-old Corolla, what price
seems appropriate?

e) You have a chance to buy one of two cars. They are
about the same age and appear to be in equally good
condition. Would you rather buy the one with a posi-
tive residual or the one with a negative residual?
Explain.

f) You see a “For Sale” sign on a 10-year-old Corolla stat-
ing the asking price as $3500. What is the residual?

g) Would this regression model be useful in establishing
a fair price for a 20-year-old car? Explain.

The table shows the number of live

births per 1000 women aged 15-44 years in the United

States, starting in 1965. (National Center for Health Statis-

tics, www.cdc.gov/nchs/)

1965|1970 1975
1941184 | 14.8

1980
15.9

1985119901995 | 2000 | 2005
156 116.4114.8 | 144 114.0

Year
Rate

a) Make a scatterplot and describe the general trend in
Birthrates. (Enter Year as years since 1900: 65, 70, 75, etc.)

b) Find the equation of the regression line.

c) Check to see if the line is an appropriate model.
Explain.
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d) Interpret the slope of the line.

e) The table gives rates only at 5-year intervals. Estimate

what the rate was in 1978.

In 1978 the birthrate was actually 15.0. How close did

your model come?

Predict what the Birthrate will be in 2010. Comment on

your faith in this prediction.

h) Predict the Birthrate for 2025. Comment on your faith
in this prediction.

f

NG

g

45. Burgers. Inthe last chapter, you examined the associa-
tion between the amounts of Fat and Calories in fast-food
hamburgers. Here are the data:

31 | 34

‘ 19 ‘ 39
410 | 580 | 590

Fat (g) ‘ 35‘
570 | 640

‘ 39 ‘ 43
Calories 680 | 660
a) Create a scatterplot of Calories vs. Fat.

b) Interpret the value of R? in this context.

c) Write the equation of the line of regression.

d) Use the residuals plot to explain whether your linear
model is appropriate.

e) Explain the meaning of the y-intercept of the line.

f) Explain the meaning of the slope of the line.

g) Anew burger containing 28 grams of fat is intro-
duced. According to this model, its residual for
calories is +33. How many calories does the burger
have?

46. Chicken. Chicken sandwiches are often advertised as a
healthier alternative to beef because many are lower in
fat. Tests on 11 brands of fast-food chicken sandwiches
produced the following summary statistics and scatter-
plot from a graphing calculator:

Fat (g) Calories

Mean 206 4727 a
St. Dev. 9.8 1442 a
Correlation 0.947 am
'L
a
B
a) Do you think a linear model is appropriate in this

situation?

b) Describe the strength of this association.

c) Write the equation of the regression line to estimate
calories from the fat content.

d) Explain the meaning of the slope.

e) Explain the meaning of the y-intercept.

f) What does it mean if a certain sandwich has a nega-
tive residual?

47. A second helping of burgers.

48.

49.

In Exercise 45 you cre-

ated a model that can estimate the number of Calories in a

burger when the Fat content is known.

a) Explain why you cannot use that model to estimate
the fat content of a burger with 600 calories.

b) Using an appropriate model, estimate the fat content
of a burger with 600 calories.

A second helping of chicken. InExercise 46 you cre-

ated a model to estimate the number of Calories in a

chicken sandwich when you know the Fat.

a) Explain why you cannot use that model to estimate
the fat content of a 400-calorie sandwich.

b) Make that estimate using an appropriate model.

Body fat. Itis difficult to determine a person’s body fat
percentage accurately without immersing him or her in
water. Researchers hoping to find ways to make a good
estimate immersed 20 male subjects, then measured their
waists and recorded their weights.

Waist | Weight Body Waist | Weight Body
(in.) (Ib) Fat (%) (in.) (Ib) Fat (%)
32 175 6 &S 188 10
36 181 21 40 240 20
38 200 15 36 175 22
B 159 6 32 168 9
39 196 22 44 246 38
40 192 31 33 160 10
41 205 32 41 215 27
E5 173 21 34 159 12
38 187 25 34 146 10
38 188 30 44 219 28

50.

51.

a) Create a model to predict %Body Fat from Weight.
b) Do you think a linear model is appropriate? Explain.
¢) Interpret the slope of your model.
d) Is your model likely to make reliable estimates?
Explain.
e) What is the residual for a person who weighs
190 pounds and has 21% body fat?

Body fat again. Would a model that uses the person’s
Waist size be able to predict the %Body Fat more accu-
rately than one that uses Weight? Using the data in Exer-
cise 49, create and analyze that model.

Heptathlon 2004. We discussed the women’s 2004
Olympic heptathlon in Chapter 6. The table on the next
page shows the results from the high jump, 800-meter
run, and long jump for the 26 women who successfully
completed all three events in the 2004 Olympics.
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Let’s examine the association among these events. Per-

Name Country High Jump (m) 800-m (sec) Long Jump (m)
Carolina Kluft SWE 191 134.15 6.51
Austra Skujyté LIT 176 135.92 6.30
Kelly Sotherton GBR 1.85 132.27 6.51
Shelia Burrell USA 1.70 135.32 6.25
Yelena Prokhorova RUS 1.79 131.31 6.21
Sonja Kesselschlaeger GER 176 135.21 6.42
Marie Collonville FRA 1.85 133.62 6.19
Natalya Dobrynska UKR 1.82 137.01 6.23
Margaret Simpson GHA 1.79 137.72 6.02
Svetlana Sokolova RUS 1.70 133.23 5.84
J.J. Shobha IND 1.67 137.28 6.36
Claudia Tonn GER 1.82 130.77 6.35
Naide Gomes POR 1.85 140.05 6.10
Michelle Perry USA 1.70 133.69 6.02
Aryiro Strataki GRE 1.79 137.90 597
Karin Ruckstuhl NED 1.85 133.95 5.90
Karin Ertl GER 173 138.68 6.03
Kylie Wheeler AUS 1.79 137.65 6.36
Janice Josephs RSA 1.70 138.47 6.21
Tiffany Lott Hogan USA 1.67 145.10 6.15
Magdalena Szczepanska POL 176 133.08 5.98
Irina Naumenko KAZ 1.79 134.57 6.16
Yuliya Akulenko UKR 173 142.58 6.02
Soma Biswas IND 1.70 132.27 5.92
Marsha Mark-Baird TRI 1.70 141.21 6.22
Michaela Hejnova CZE 1.70 145.68 5.70

form a regression to predict high-jump performance from
the 800-meter results.

a) What is the regression equation? What does the slope

b) What percent of the variability in high jumps can be

c)

d)
e)

Heptathlon 2004 again.

mean?

accounted for by differences in 800-m times?

Do good high jumpers tend to be fast runners? (Be
careful—low times are good for running events and
high distances are good for jumps.)

What does the residuals plot reveal about the model?

Do you think this is a useful model? Would you use it

to predict high-jump performance? (Compare the
residual standard deviation to the standard deviation

of the high jumps.)

We saw the data for the

54.

women’s 2004 Olympic heptathlon in Exercise 51. Are the

two jumping events associated? Perform a regression of

the long-jump results on the high-jump results.

. Least squares.

Exercises
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a) What is the regression equation? What does the slope

mean?

b) What percentage of the variability in long jumps can

be accounted for by high-jump performances?
c) Do good high jumpers tend to be good long jumpers?
d) What does the residuals plot reveal about the model?
e) Do you think this is a useful model? Would you use it

to predict long-jump performance? (Compare the

residual standard deviation to the standard deviation

of the long jumps.)

using these data as a specific example.

Least squares.

Consider the four points (10,10),
(20,50), (40,20), and (50,80). The least squares line is
§ = 7.0 + 1.1x. Explain what “least squares” means,

Consider the four points (200,1950),

(400,1650), (600,1800), and (800,1600). The least squares
line is = 1975 — 0.45x. Explain what “least squares”
means, using these data as a specific example.
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12.

13.

14,

JUST CHECKING
Answers

. You should expect the price to be 0.77 standard devi-

ations above the mean.

. You should expect the size to be 2(0.77) = 1.54 stan-

dard deviations below the mean.

. The home is 1.5 standard deviations above the mean

in size no matter how size is measured.

. An increase in home size of 1000 square feet is associ-

ated with an increase in price of $94,454, on average.

. Units are thousands of dollars per thousand square

feet.

. About $188,908, on average
. No. Even if it were positive, no one wants a house

with 0 square feet!

. Negative; that indicates it’s priced lower than a

typical home of its size.

. $280,245
10.
11.

$19,755 (positive!)

Differences in the size of houses account for about
59.5% of the variation in the house prices.

It’s positive. The correlation and the slope have the
same sign.

R? would not change, but the slope would. Slope
depends on the units used but correlation doesn'’t.
No, the standard deviation of the residuals is 53.79
thousand dollars. We shouldn’t be surprised by any

residual smaller than 2 standard deviations, and a
residual of $100,000 is less than 2(53,790).




