CHAPTER

Regression
Wisdom

AS Activity: Construct a Plot
with a Given Slope. How's your
feel for regression lines? Can you
make a scatterplot that has a
specified slope?

throughout the world to predict customer lovalty, numbers of admissions

at hospitals, sales of automobiles, and many other things. Because regres-
sion is so widely used, it’s also widely abused and misinterpreted. This chapter
presents examples of regressions in which things are not quite as simple as they
may have seemed at first, and shows how vou can still use regression to discover
what the data have to say.

I z egression may be the most widely used Statistics method. It is used every day

Getting the “Bends”: When the Residuals
Aren’t Straight

We can’t know whether the
Linearity Assumption is true,
but we can see if it’s plausible
by checking the Straight
Enough Condition.

No regression analysis is complete without a display of the residuals to check that
the linear model is reasonable. Because the residuals are what is “left over” after
the model describes the relationship, they often reveal subtleties that were not
clear from a plot of the original data. Sometimes these are additional details that
help confirm or refine our understanding. Sometimes they reveal violations of the
regression conditions that require our attention.

The fundamental assumption in working with a linear model is that the rela-
tionship you are modeling is, in fact, linear. That sounds obvious, but when you
fit a regression, you can’t take it for granted. Often it’s hard to tell from the scat-
terplot you looked at before vou fit the regression model. Sometimes you can’t see
a bend in the relationship until you plot the residuals.

Jessica Meir and Paul Ponganis study emperor penguins at the Scripps Insti-
tution of Oceanography’s Center for Marine Biotechnology and Biomedicine at
the University of California at San Diego. Says Jessica:

Emperor penguins are the most accomplished divers among birds, making routine dives
of 5-12 minutes, with the longest recorded dive over 27 minutes. These birds can also
dive to depths of over 500 meters! Since air-breathing animals like penguins must hold
their breath while submerged, the duration of any given dive depends on how much oxy-
gen is in the bird's body at the beginning of the dive, how quickly that oxygen gets used,
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The scatterplot of Dive Heart Rate in beats per minute (bpm)
vs. Duration (minutes) shows a strong, roughly linear, nega-
tive association.

Residuals

Duration (mins)

FIGURE 9.2

Plotting the residuals against Duration reveals a bend. It was
also in the original scatterplot, but here it’s easier to see.

and the lowest level of oxygen the bird can tolerate. The rate of oxygen
depletion is primarily determined by the penguin’s heart rate. Conse-
quently, studies of heart rates during dives can help us understand how
these animals regulate their oxygen consumption in order to make such
inipressive dives.

The researchers equip emperor penguins with devices that
record their heart rates during dives. Here’s a scatterplot of the
Dive Heart Rate (beats per minute) and the Duration (minutes) of
dives by these high-tech penguins.

The scatterplot looks fairly linear with a moderately strong

. c e 2 _ 0, . . .
negative association (R® = 71.5%). The linear regression equation

—_ . T—
DiveHeartRate = 96.9 — 5.47 Duration

says that for longer dives, the average Dive Heart Rate is lower by
about 5.47 beats per dive minute, starting from a value of 96.9
beats per minute.

The scatterplot of the residuals against Duration holds a sur-
prise. The Linearity Assumption says we should not see a pattern,
butinstead there’s a bend, starting high on the left, dropping down
in the middle of the plot, and rising again at the right. Graphs of
residuals often reveal patterns such as this that were easy to miss
in the original scatterplot.

Now looking back at the original scatterplot, you may see that
the scatter of points isn’t really straight. There’s a slight bend to
that plot, but the bend is much easier to see in the residuals. Even
though it means rechecking the Straight Enough Condition after
you find the regression, it’s always a good idea to check your scat-
terplot of the residuals for bends that you might have overlooked
in the original scatterplot.

Sifting Residuals for Groups
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FIGURE 9.3

A histogram of the regression residuals shows small
modes both above and below the central large mode.
These may be worth a second look.

In the Step-By-Step analysis in Chapter 8 to predict Calories from
Sugar content in breakfast cereals, we examined a scatterplot of the
residuals. Our first impression was that it had no particular structure—
a conclusion that supported using the regression model. But let’s
look again.

Here’s a histogram of the residuals. How would you describe its
shape? It looks like there might be small modes on both sides of the
central body of the data. One group of cereals seems to stand out as
having large negative residuals, with fewer calories than we might
have predicted, and another stands out with large positive residuals.
The calories in these cereals were underestimated by the model.
Whenever we suspect multiple modes, we ask whether they are
somehow different.

On the next page is the residual plot, with the points in those
modes marked. Now we can see that those two groups stand away
from the central pattern in the scatterplot. The high-residual cereals
are Just Right Fruit & Nut; Muesli Raisins, Dates & Almonds;
Peaches & Pecans; Mueslix Crispy Blend; and Nutri-Grain Almond

Raisin. Do these cereals seem to have something in common? They all present
themselves as “healthy.” This might be surprising, but in fact, “healthy” cereals
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% often contain more fat, and therefore more calories, than we might
expect from looking at their sugar content alone.

The low-residual cereals are Puffed Rice, Puffed Wheat, three bran
cereals, and Golden Crisps. You might not have grouped these cereals to-
gether before. What they have in common is a low calorie count relative to
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te. o their sugar content—even though their sugar contents are quite different.

. These observations may not lead us to question the overall linear
model, but they do help us understand that other factors may be part of
the story. An examination of residuals often leads us to discover groups
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A scatterplot of the residuals vs. predicted values for . N N
” points are cereals  ply note that there are groups that are a little different. Either way, the

the cereal regression. The green “x

of observations that are different from the rest.

When we discover that there is more than one group in a regres-
sion, we may decide to analyze the groups separately, using a different
model for each group. Or we can stick with the original model and sim-

whose calorie content is higher than the linear model model will be wrong, but useful, so it will improve our understanding
predicts. The red “~” points show cereals with fewer of the data
calories than the model predicts. Is there something :

special about these cereals?

Subsets

Here’s an important
unstated condition for fitting
models: All the data must
come from the same
population.

FIGURE 9.5
Calories and Sugar colored according
to the shelf on which the cereal was
found in a supermarket, with
regression lines fit for each shelf
individually. Do these data appear
homogeneous? That is, do all the
cereals seem to be from the same
population of cereals? Or are there
different kinds of cereals that we
might want to consider separately?

Cereal manufacturers aim cereals at different segments of the market. Supermar-
kets and cereal manufacturers try to attract different customers by placing differ-
ent types of cereals on certain shelves. Cereals for kids tend to be on the “kid’s
shelf,” at their eye level. Toddlers wouldn’t be likely to grab a box from this shelf
and beg, “Mom, can we please get this All-Bran with Extra Fiber?”

Should we take this extra information into account in our analysis? Figure 9.5
shows a scatterplot of Calories and Sugar, colored according to the shelf on which
the cereals were found and with a separate regression line fit for each. The top
shelf is clearly different. We might want to report two regressions, one for the top
shelf and one for the bottom two shelves.!
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Extrapolation: Reaching Beyond the Data

Linear models give a predicted value for each case in the data. Put a new x-value
into the equation, and it gives a predicted value, J, to go with it. But when the
new x-value lies far from the data we used to build the regression, how trustwor-
thy is the prediction?

! More complex models can take into account both sugar content and shelf information.
This kind of multiple regression model is a natural extension of the model we’re using here.
You can learn about such models in Chapter 29 on the DVD.
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AS Case Study: Predicting
Manatee Kills. Can we use
regression to predict the number
of manatees that will be killed by
power boats this year?

“Prediction is difficult,
especially about the future.”

—Niels Bohr,
Danish physicist

Regression Wisdom

The simple answer is that the farther the new x-value is from ¥, the less trust
we should place in the predicted value. Once we venture into new x territory,
such a prediction is called an extrapolation. Extrapolations are dubious because
they require the very questionable assumption that nothing about the relationship
between x and y changes even at extreme values of x and beyond.

Extrapolations can get us into deep trouble. When the x-variable is Time, ex-
trapolation becomes an attempt to peer into the future. People have always wanted
to see into the future, and it doesn’t take a crystal ball to foresee that they always
will. In the past, seers, oracles, and wizards were called on to predict the future.
Today mediums, fortune-tellers, and Tarot card readers still find many customers.

MR. FOX, ABouT
YOUR HOMEWORK...

WWhen the Data Are Years. . .
... we usually don’t enter
them as four-digit numbers.
Here we used 0 for 1970, 10
for 1980, and so on. Or we
may simply enter two digits,
using 82 for 1982, for
instance. Rescaling years like
this often makes calculations
easier and equations
simpler. We recommend you
do it, too. But be careful: If
1982 is 82, then 2004 is 104
(not 4), right?

I ASSIGNED QUESTIONS
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FOXTROT © 2002 Bill Amend. Reprinted with permission of UNIVERSAL PRESS SYNDICATE. All rights reserved.

Those with a more scientific outlook may use a linear model as their digital
crystal ball. Linear models are based on the x-values of the data at hand and can-
not be trusted beyond that span. Some physical phenomena do exhibit a kind of
“inertia” that allows us to guess that current systematic behavior will continue,
but regularity can’t be counted on in phenomena such as stock prices, sales fig-
ures, hurricane tracks, or public opinion.

Extrapolating from current trends is so tempting that even professional fore-
casters make this mistake, and sometimes the errors are striking. In the mid-1970s,
oil prices surged and long lines at gas stations were common. In 1970, oil cost
about $17 a barrel (in 2005 dollars}—about what it had cost for 20 years or so. But
then, within just a few years, the price surged to over $40. In 1975, a survey of
15 top econometric forecasting models (built by groups that included Nobel
prize-winning economists) found predictions for 1985 oil prices that ranged from
$300 to over $700 a barrel (in 2005 dollars). How close were these forecasts?

Here's a scatterplot of oil prices from 1972 to 1981 (in 2005 dollars).

FIGURE 9.6

90+ The scatterplot shows an average

80 + increase in the price of a barrel of
g 70 + oil of over $7 per year from 1971
S 60+ to 1982.
8 50 +
N
E 40 +
& 30—+

20 +

10 +

il

}
0 2 4 6 8 10 12
Years since 1970



Price
(2005 dollars)
- NN W s O N @
o O O O ©O O o o
.
.
L]
L]
L]
L]
L]
.

J J J J

1980 1985 1990 1995
Year

2000

FIGURE 9.7
This scatterplot of oil prices from 1981 to 1998 shows a fairly
constant decrease of about $3 per barrel per year.
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FIGURE 9.8
Here are the EIA forecasts with the actual prices from 1981 to
2008. Neither forecast predicted the sharp run-up in the past

Outliers, Leverage, and Influence 2095

The regression model
—
Price = —0.85 + 7.39 Years since 1970

says that prices had been going up 7.39 dollars per year, or
nearly $74 in 10 years. If you assume that they would keep going
up, it's not hard to imagine almost any price you want.

So, how did the forecasters do? Well, in the period from 1982
to 1998 oil prices didn’t exactly continue that steady increase. In
fact, they went down so much that by 1998, prices (adjusted for
inflation) were the lowest they’d been since before World War II.

Not one of the experts” models predicted that.

Of course, these decreases clearly couldn’t continue, or oil
would be free by now. The Energy Information Administration
offered two different 20-year forecasts for oil prices after 1998,
and both called for relatively modest increases in oil prices. So,
how accurate have these forecasts been? Here’s a timeplot of the
EIA’s predictions and the actual prices (in 2005 dollars).

Oops! They seemed to have missed the sharp run-up in oil
prices in the past few years.

Where do you think oil prices will go in the next decade?
Your guess may be as good as anyone’s!

Of course, knowing that extrapolation is dangerous doesn’t
stop people. The temptation to see into the future is hard to resist.
So our more realistic advice is this:

If you must extrapolate into the future, at least don’t believe that the
prediction will come true.

few years.

Outliers, L

everage, and Influence

The outcome of the 2000 U.S. presidential election was determined in Florida amid
much controversy. The main race was between George W. Bush and Al Gore, but
two minor candidates played a significant role. To the political right of the main
party candidates was Pat Buchanan, while to the political left was Ralph Nader. Gen-
erally, Nader earned more votes than Buchanan throughout the state. We would
expect counties with larger vote totals to give more votes to each candidate. Here’s a
regression relating Buchanan’s vote totals by county in the state of Florida to Nader’s:

Dependent variable is: Buchanan
R-squared = 42.8%

Variable Coefficient
Intercept 50.3
Nader 0.14

The regression model,
—_—
Buchanan = 50.3 + 0.14 Nader,

says that, in each county, Buchanan received about 0.14 times (or 14% of) the vote
Nader received, starting from a base of 50.3 votes.

This seems like a reasonable regression, with an R2? of almost 43%. But we've
violated all three Rules of Data Analysis by going straight to the regression table
without making a picture.

Here’s a scatterplot that shows the vote for Buchanan in each county of Florida
plotted against the vote for Nader. The striking outlier is Palm Beach County.
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“Nature is nowhere accustomed
more openly to display her
secret mysteries than in cases
where she shows traces of her
workings apart from the beaten
path.”

—William Harvey
(1657)
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x FIGURE 8.9
Votes received by Buchanan against votes
3000 1 for Nader in all Florida counties in the

presidential election of 2000. The red “x”
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The so-called “butterfly ballot,” used only in Palm Beach County, was a
source of controversy. It has been claimed that the format of this ballot confused
voters so that some who intended to vote for the Democrat, Al Gore, punched the
wrong hole next to his name and, as a result, voted for Buchanan.

The scatterplot shows a strong, positive, linear

. association, and one striking point. With Palm Beach

removed from the regression, the R? jumps from
42.8% to 82.1% and the slope of the line changes to
0.1, suggesting that Buchanan received only about
10% of the vote that Nader received. With more than
82% of the variability of the Buchanan vote accounted
for, the model when Palm Beach is omitted certainly
fits better. Palm Beach County now stands out, not as
a Buchanan stronghold, but rather as a clear violation
of the model that begs for explanation.

One of the great values of models is that, by estab-
lishing an idealized behavior, they help us to see when

Nader (votes)

FIGURE 9.10

The red line shows the effect that one unusual point can have on a regression.

5000

“Give me a place to stand and 1
will move the Earth.”

—Archimedes
(287-211 sce)

AS Activity: Leverage. You
may be surprised to see how
sensitive to a single influential
point a regression line is.

and how data values are unusual. In regression, a
point can stand out in two different ways. First, a data
value can have a large residual, as Palm Beach County
does in this example. Because they seem to be different
from the other cases, points whose residuals are large
always deserve special attention.

A data point can also be unusual if its x-value is far from the mean of the
x-values. Such a point is said to have high leverage. The physical image of a lever
is exactly right. We know the line must pass through (¥, ), so you can picture that
point as the fulcrum of the lever. Just as sitting farther from the hinge on a see-saw
gives you more leverage to pull it your way, points with values far from x pull
more strongly on the regression line.

A point with high leverage has the potential to change the regression line.
But it doesn’t always use that potential. If the point lines up with the pattern of
the other points, then including it doesn’t change our estimate of the line. By sitting
so far from ¥, though, it may strengthen the relationship, inflating the correla-
tion and R%. How can you tell if a high-leverage point actually changes the
model? Just fit the linear model twice, both with and without the point in ques-
tion. We say that a point is influential if omitting it from the analysis gives a very
different model.

Influence depends on both leverage and residual; a case with high leverage
whose y-value sits right on the line fit to the rest of the data is not influential.

2Some textbooks use the term influential point for any observation that influences the slope,
intercept, or R% We'll reserve the term for points that influence the slope.
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Influential points. Try to make
the regression line’s slope change
dramatically by dragging a point
around in the scatterplot.

“For whoever knows the ways of
Nature will more easily notice
her deviations; and, on the
other hand, whoever knows her
deviations will more accurately
describe her ways.”

—TFrancis Bacon
(1561-1626)
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FIGURE 9.1

Bozo’s extraordinarily large shoes give his
data point high leverage in the regression.
Wherever Bozo’s |Q falls, the regression line
will follow.
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If Bozo’s 1Q were low, the regression slope
would change from positive to negative.

A single influential point can change a
regression model drastically.

Outliers, Leverage, and Influence 207

Removing that case won’t change the slope, even if it does affect R2. A case with
modest leverage but a very large residual (such as Palm Beach County) can be
influential. Of course, if a point has enough leverage, it can pull the line right to
it. Then it’s highly influential, but its residual is small. The only way to be sure
is to fit both regressions.

Unusual points in a regression often tell us more about the data and the model
than any other points. We face a challenge: The best way to identify unusual points
is against the background of a model, but good models are free of the influence of
unusual points. (That insight’s at least 400 years old. See the sidebar.) Don’t give in
to the temptation to simply delete points that don’t fit the line. You can take points
out and discuss what the model looks like with and without them, but arbitrarily
deleting points can give a false sense of how well the model fits the data. Your goal
should be understanding the data, not making R as big as you can.

In 2000, George W. Bush won Florida (and thus the presidency) by only a few
hundred votes, so Palm Beach County’s residual is big enough to be meaningful.
It’s the rare unusual point that determines a presidency, but all are worth examin-
ing and trying to understand.

A point with so much influence that it pulls the regression line close to it
can make its residual deceptively small. Influential points like that can have a
shocking effect on the regression. Here’s a plot of IQ against Shoe Size, again
from the fanciful study of intelligence and foot size in comedians we saw in
Chapter 7. The linear regression output shows

Dependent variable is: 1Q
R-squared = 24.8%

Variable Coefficient
Intercept 93.3265
Shoe size 2.08318

Although this is a silly example, it illustrates an important and common po-
tential problem: Almost all of the variance accounted for (R? = 24.8%) is due to
one point, namely, Bozo. Without Bozo, there is little correlation between Shoe
Size and IQ. Look what happens to the regression when we take him out:

Dependent variable is: 1Q
R-squared = 0.7%

Variable Coefficient
Intercept 105.458
Shoe size -0.460194

The R? value is now 0.7%—a very weak linear relationship (as one might
expect!). One single point exhibits a great influence on the regression analysis.

What would have happened if Bozo hadn’t shown his comic genius on
IQ tests? Suppose his measured IQ had been only 50. The slope of the line
would then drop from 0.96 IQ points/shoe size to —0.69 IQ points/shoe
size. No matter where Bozo’s IQ is, the line tends to follow it because his
Shoe Size, being so far from the mean Shoe Size, makes this a high-leverage
point.

Even though this example is far fetched, similar situations occur all the
time in real life. For example, a regression of sales against floor space for hard-
ware stores that looked primarily at small-town businesses could be domi-
nated in a similar way if The Home Depot were included.

Warning: Influential points can hide in plots of residuals. Points with high leverage
pull the line close to them, so they often have small residuals. You'll see influential
points more easily in scatterplots of the original data or by finding a regression model
with and without the points.
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Lurking Variables and Causation

One common way to
interpret a regression slope
is to say that “a change of

1 unitin x results in a change
of by units in y.” This way of
saying things encourages
causal thinking. Beware.
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The relationship between Life Expectancy
(years) and availability of Doctors (measured

as 'V doctors perperson) for countries of the

world is strong, positive, and linear.

In Chapter 7, we tried to make it clear that no matter how strong the correlation is
between two variables, there’s no simple way to show that one variable causes the
other. Putting a regression line through a cloud of points just increases the tempta-
tion to think and to say that the x-variable causes the y-variable. Just to make sure,
let’s repeat the point again: No matter how strong the association, no matter how
large the R? value, no matter how straight the line, there is no way to conclude from
a regression alone that one variable causes the other. There’s always the possibility
that some third variable is driving both of the variables you have observed. With
observational data, as opposed to data from a designed experiment, there is no way
to be sure that a lurking variable is not the cause of any apparent association.

Here’s an example: The scatterplot shows the Life Expectancy (average of
men and women, in years) for each of 41 countries of the world, plotted
against the square root of the number of Doctors per person in the country.
(The square root is here to make the relationship satisfy the Straight Enough
Condition, as we saw back in Chapter 7.)

The strong positive association (R? = 62.4%) seems to confirm our expec-
tation that more Doctors per person improves healthcare, leading to longer
lifetimes and a greater Life Expectancy. The strength of the association would
seem to argue that we should send more doctors to developing countries to in-
crease life expectancy.

That conclusion is about the consequences of a change. Would sending
more doctors increase life expectancy? Specifically, do doctors cause greater
life expectancy? Perhaps, but these are observed data, so there may be another
explanation for the association.

On the next page, the similar-looking scatterplot’s x-variable is the square
root of the number of Televisions per person in each country. The positive associ-
ation in this scatterplot is even stronger than the association in the previous plot
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To increase life expectancy, don’t send doctors, send
TVs; they're cheaper and more fun. Or maybe that's
not the right interpretation of this scatterplot of life

expectancy against availability of TVs (as

\V/TVs perperson).
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(R? = 72.3%). We can fit the linear model, and quite possibly use the num-
ber of TVs as a way to predict life expectancy. Should we conclude that in-
creasing the number of TVs actually extends lifetimes? If so, we should
send TVs instead of doctors to developing countries. Not only is the corre-
lation with life expectancy higher, but TVs are much cheaper than doctors.

What's wrong with this reasoning? Maybe we were a bit hasty earlier
when we concluded that doctors cause longer lives. Maybe there’s a lurk-
ing variable here. Countries with higher standards of living have both
longer life expectancies and more doctors (and more TVs). Could higher
living standards cause changes in the other variables? If so, then improv-
ing living standards might be expected to prolong lives, increase the
number of doctors, and increase the number of TVs.

From this example, you can see how easy it is to fall into the trap of
mistakenly inferring causality from a regression. For all we know, doctors
(or TVs!) do increase life expectancy. But we can’t tell that from data like
these, no matter how much we’d like to. Resist the temptation to conclude
that x causes y from a regression, no matter how obvious that conclusion
seems to you.

Working with Summary Values

Scatterplots of statistics summarized over groups tend to show less variability
than we would see if we measured the same variable on individuals. This is
because the summary statistics themselves vary less than the data on the individ-
uals do—a fact we will make more specific in coming chapters.

In Chapter 7 we looked at the heights and weights of individual students.
There we saw a correlation of 0.644, so R? is 41.5%.

FIGURE 9,16

Mean Weight (Ib) shows a stronger linear associa-
tion with Height than do the weights of individuals.
Means vary less than individual values.
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Weight (Ib) against Height (in.) for a
240 + sample of men. There’s a strong,
positive, linear association.
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Suppose, instead of data on individuals, we knew only the mean
weight for each height value. The scatterplot of mean weight by height
would show less scatter. And the R2 would increase to 80.1%.

Scatterplots of summary statistics show less scatter than the baseline
data on individuals and can give a false impression of how well a line
summarizes the data. There’s no simple correction for this phenomenon.
Once we're given summary data, there’s no simple way to get the original
values back.

In the life expectancy and TVs example, we have no good measure
of exposure to doctors or to TV on an individual basis. But if we did, we
should expect the scatterplot to show more variability and the correspond-
ing R? to be smaller. The bottom line is that you should be a bit suspicious
of conclusions based on regressions of summary data. They may look better
than they really are.
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Fon EXAMPLE 4a Using several of these methods together

Motorcycles designed to run off-road, often known as dirt bikes, are specialized vehicles.

We have data on 104 dirt bikes available for sale in 2005. Some cost as little as $3000,
while others are substantially more expensive. Let's investigate how the size and type of engine
contribute to the cost of a dirt bike. As always, we start with a scatterplot.

Here's a scatterplot of the manufacturer's suggested retail price (MSRP) in dollars against
the engine Displacement, along with a regression analysis:

20,000 + o
16,000 + |
|
% 12,000 +
= . o Dependent variable is: MSRP
8000 - 2 o R-squared = 49.9% s = 1737
o §°% 2
001 s, 0 © a5t g b Variable Coefficient
"~.,-,- ¢ Intercept 2273.67
I I I 4 Displacement 10.0297
150 300 450 600
Displacement

Question: What do you see in the scatterplot?

There is a strong positive association between the engine displacement of dirt bikes and the manufacturer's
suggested retail price. One of the dirt bikes is an outlier; its price is more than double that of any other bike.

The outlier is the Husqvarna TE 510 Centennial. Most of its components are handmade exclusively for this model, including extensive use of carbon fiber
throughout. That may explain its $19,500 price tag! Clearly, the TE 510 is not like the other bikes. We'll set it aside for now and look at the data for the
remaining dirt bikes.

Question: What effect will removing this outlier have on the regression? Describe how the slope, R%, and s, will change.

The TE 510 was an influential point, tilting the regression line upward. With that point removed, the regression slope
will get smaller. With that dirt bike omitted, the pattern becomes more consistent, so the value of R? should get
larger and the standard deviation of the residuals, 5., should get smaller.

With the outlier omitted, here’s the new regression and a scatterplot of the residuals:

o Dependent variable is: MSRP
1500 3 e l .! . @ . R-squared = 61.3% s = 1237
§ 01ie s i : Variable Coefficient
5 *en® vet : Intercept 2411.02
=1500 5 < o . Displacement 9.05450
-3000 .

t t t t
3750 5000 6250 7500
Predicted

Question: What do you see in the residuals plot?

The points at the far right don’t fit well with the other dirt bikes. Overall, there appears to be a bend in the relation-
ship, 0 a linear model may not be appropriate.

Let’s try a re-expression. Here's a scatterplot showing MSRP against the cube root of Displacement to make the relationship closer to straight. (Since dis-
placement is measured in cubic centimeters, its cube root has the simple units of centimeters.) In addition, we've colored the plot according to the cooling
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method used in the bike's engine: liquid or air. Each group is shown with its own

Lo . . 8000 +
regression line, as we did for the cereals on different shelves.

Question: What does this plot say about dirt bikes? 6000

There appears to be a positive, linear relationship between
MSRP and the cube root of Displacement. In general, the larger
the engine a bike has, the higher the suggested price. Liquid-
cooled dirt bikes, however, typically cost more than air-cooled
bikes with comparable displacement. A few liquid-cooled bikes
appear to be much less expensive than we might expect, given I I I ' '
their engine displacements. 3.75 5.00 6.25 7.50 8.75

3/
[Jiang Lu, Joseph B. Kadane, and Peter Boatwright, “The Dirt on Bikes: An VDisplacement
lllustration of CART Models for Brand Differentiation,” provides data on 2005-
model bikes.]

MSRP

4000
» Liquid-cooled
o Air-cooled

2000
.

/ N
WHAT CAN GO WRONG?

This entire chapter has held warnings about things that can go wrong in a regression

analysis. So let’s just recap. When you make a linear model:

> Make sure the relationship is straight. Check the Straight Enough Condition. Always
examine the residuals for evidence that the Linearity Assumption has failed. It’s
often easier to see deviations from a straight line in the residuals plot than in the
scatterplot of the original data. Pay special attention to the most extreme residuals
because they may have something to add to the story told by the linear model.

> Be on guard for different groups in your regression. Check for evidence that the data con-
sist of separate subsets. If you find subsets that behave differently, consider fitting a
different linear model to each subset.

> Beware of extrapolating. Beware of extrapolation beyond the x-values that were used
to fit the model. Although it’s common to use linear models to extrapolate, the prac-
tice is dangerous.

> Beware especially of extrapolating into the future! Be especially cautious about extrapo-
lating into the future with linear models. To predict the future, you must assume
that future changes will continue at the same rate you've observed in the past. Pre-
dicting the future is particularly tempting and particularly dangerous.

> Look for unusual points. Unusual points always deserve attention and may well re-
veal more about your data than the rest of the points combined. Always look for
them and try to understand why they stand apart. A scatterplot of the data is a good
way to see high-leverage and influential points. A scatterplot of the residuals against
the predicted values is a good tool for finding points with large residuals.

> Beware of high-leverage points and especially of those that are influential. Influential points
can alter the regression model a great deal. The resulting model may say more about
one or two points than about the overall relationship.

> Consider comparing two regressions. To see the impact of outliers on a regression, it’s
often wise to run two regressions, one with and one without the extraordinary
points, and then to discuss the differences.

> Treat unusual points honestly. If you remove enough carefully selected points, you can
always get a regression with a high R? eventually. But it won’t give you much un-
derstanding. Some variables are not related in a way that’s simple enough for a lin-
ear model to fit very well. When that happens, report the failure and stop.

(continued)
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> Beware of lurking variables. Think about lurking variables before interpreting a linear
model. It’s particularly tempting to explain a strong regression by thinking that the
x-variable causes the y-variable. A linear model alone can never demonstrate such
causation, in part because it cannot eliminate the chance that a lurking variable has
caused the variation in both x and y.

> Watch out when dealing with data that are summaries. Be cautious in working with data
values that are themselves summaries, such as means or medians. Such statistics are
less variable than the data on which they are based, so they tend to inflate the im-
pression of the strength of a relationship.

CONNECTIONS

We are always alert to things that can go wrong if we use statistics without thinking carefully. Regres-
sion opens new vistas of potential problems. But each one relates to issues we've thought about before.
Itis always important that our data be from a single homogeneous group and not made up of
disparate groups. We looked for multiple modes in single variables. Now we check scatterplots for
evidence of subgroups in our data. As with modes, it’s often best to split the data and analyze the

groups separately.

Our concern with unusual points and their potential influence also harks back to our earlier con-
cern with outliers in histograms and boxplots—and for many of the same reasons. As we’ve seen
here, regression offers such points new scope for mischief.

The risks of interpreting linear models as causal or predictive arose in Chapters 7 and 8. And
they’re important enough to mention again in later chapters.

WHAT HAVE WE LEARNED?

We've learned that there are many ways in which a data set may be unsuitable for a regression
analysis.

» Watch out for more than one group hiding in your regression analysis. If you find subsets of the
data that behave differently, consider fitting a different regression model to each subset.

» The Straight Enough Condition says that the relationship should be reasonably straight to fit a
regression. Somewhat paradoxically, sometimes it's easier to see that the relationship is not
straight after fitting the regression by examining the residuals. The same is true of outliers.

» The Outlier Condition actually means two things: Points with large residuals or high leverage
(especially both) can influence the regression model significantly. It's a good idea to perform the
regression analysis with and without such points to see their impact.

And we've learned that even a good regression doesn't mean we should believe that the model says

more than it really does.

» Extrapolation far from X can lead to silly and useless predictions.

» Even an R* near 100% doesn't indicate that x causes y (or the other way around). Watch out for
lurking variables that may affect both x and y.

» Be careful when you interpret regressions based on summaries of the data sets. These regres-
sions tend to look stronger than the regression based on all the individual data.

Terms

Extrapolation 203. Although linear models provide an easy way to predict values of y for a given value of , it
is unsafe to predict for values of x far from the ones used to find the linear model equation. Such
extrapolation may pretend to see into the future, but the predictions should not be trusted.
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Outlier 205. Any data point that stands away from the others can be called an outlier. In regression, out-
liers can be extraordinary in two ways: by having a large residual or by having high leverage.

Leverage 206. Data points whose x-values are far from the mean of x are said to exert leverage on a linear
model. High-leverage points pull the line close to them, and so they can have a large effect on the
line, sometimes completely determining the slope and intercept. With high enough leverage, their
residuals can be deceptively small.

Influential point 206. If omitting a point from the data results in a very different regression model, then that point is
called an influential point.

Lurking variable 208. A variable that is not explicitly part of a model but affects the way the variables in the model
appear to be related is called a lurking variable. Because we can never be certain that observational
data are not hiding a lurking variable that influences both x and y, it is never safe to conclude that a
linear model demonstrates a causal relationship, no matter how strong the linear association.

Skills
m » Understand that we cannot fit linear models or use linear regression if the underlying relation-
ship between the variables is not itself linear.

» Understand that data used to find a model must be homogeneous. Look for subgroups in data
before you find a regression, and analyze each separately.

» Know the danger of extrapolating beyond the range of the x-values used to find the linear model,
especially when the extrapolation tries to predict into the future.

» Understand that points can be unusual by having a large residual or by having high leverage.
» Understand that an influential point can change the slope and intercept of the regression line.

» Look for lurking variables whenever you consider the association between two variables. Under-
stand that a strong association does not mean that the variables are causally related.

» Know how to display residuals from a linear model by making a scatterplot of residuals against
predicted values or against the x-variable, and know what patterns to look for in the picture.

@ » Know how to look for high-leverage and influential points by examining a scatterplot of the data
and how to look for points with large residuals by examining a scatterplot of the residuals against
the predicted values or against the x-variable. Understand how fitting a regression line with and
without influential points can add to your understanding of the regression model.

» Know how to look for high-leverage points by examining the distribution of the x-values or by
recognizing them in a scatterplot of the data, and understand how they can affect a linear model.

m » Include diagnostic information such as plots of residuals and leverages as part of your report of a
regression.

» Report any high-leverage points.

» Report any outliers. Consider reporting analyses with and without outliers, to assess their influ-
ence on the regression.

» Include appropriate cautions about extrapolation when reporting predictions from a linear model.

» Discuss possible lurking variables.

REGRESSION DIAGNOSIS ON THE COMPUTER

Most statistics technology offers simple ways to check whether your data satisfy the conditions for regression.
We have already seen that these programs can make a simple scatterplot. They can also help us check the
conditions by plotting residuals.




214 CHAPTER 9 Regression Wisdom

EXERCISES

1. Marriage age 2003. Is there evidence that the age at

which women get married has changed over the past
100 years? The scatterplot shows the trend in age at first
marriage for American women (Www.census.gov).
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a) Isthere a clear pattern? Describe the trend.
b) Is the association strong?

¢) Is the correlation high? Explain.

d) Isalinear model appropriate? Explain.

. Smoking 2004. The Centers for Disease Control and
Prevention track cigarette smoking in the United States.
How has the percentage of people who smoke changed
since the danger became clear during the last half of the
20th century? The scatterplot shows percentages of smok-
ers among men 18-24 years of age, as estimated by sur-
veys, from 1965 through 2004 (www.cdc.gov /nchs/).
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a) Is there a clear pattern? Describe the trend.
b) Is the association strong?
¢) Isalinear model appropriate? Explain.

. Human Development Index. The United Nations
Development Programme (UNDP) uses the Human
Development Index (HDI) in an attempt to summarize
in one number the progress in health, education, and eco-
nomics of a country. In 2006, the HDI was as high as 0.965
for Norway and as low as 0.331 for Niger. The gross do-
mestic product per capita (GDPPC), by contrast, is often
used to summarize the overall economic strength of a
country. Is the HDI related to the GDPPC? Here is a scat-
terplot of HDI against GDPPC.
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a) Explain why fitting a linear model to these data might
be misleading.

b) Ifyou fit a linear model to the data, what do you think
a scatterplot of residuals versus predicted HDI will
look like?

¢) There is an outlier (Luxembourg) with a GDPPC of
around $70,000. Will setting this point aside improve
the model substantially? Explain.

. HDI Revisited. The United Nations Development Pro-

gramme (UNDP) uses the Human Development Index
(HDI) in an attempt to summarize in one number the
progress in health, education, and economics of a coun-
try. The number of cell phone subscribers per 1000 people
is positively associated with economic progress in a coun-
try. Can the number of cell phone subscribers be used to
predict the HDI? Here is a scatterplot of HDI against cell
phone subscribers:
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a) Explain why fitting a linear model to these data might
be misleading.

b) If you fit a linear model to the data, what do you think
a scatterplot of residuals versus predicted HDI will
look like?

. Good model? Injustifying his choice of a model, a stu-

dent wrote, “I know this is the correct model because

R% = 99.4%.”

a) Is this reasoning correct? Explain.

b) Does this model allow the student to make accurate
predictions? Explain.
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. Movie Dramas.

. Movie Ratings.

Bad model? A student who has created a linear model is

disappointed to find that her R? value is a very low 13%.

a) Does this mean that a linear model is not appropriate?
Explain.

b) Does this model allow the student to make accurate
predictions? Explain.

Here’s a scatterplot of the production
budgets (in millions of dollars) vs. the running time (in
minutes) for major release movies in 2005. Dramas are plot-
ted in red and all other genres are plotted in black. A sepa-
rate least squares regression line has been fitted to each
group. For the following questions, just examine the plot:

-
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a) What are the units for the slopes of these lines?

b) In what way are dramas and other movies similar
with respect to this relationship?

¢) Inwhat way are dramas different from other genres of
movies with respect to this relationship?

Does the cost of making a movie de-
pend on its audience? Here’s a scatterplot of the same
data we examined in Exercise 7. Movies with an R rating
are colored purple, those with a PG-13 rating are red, and
those with a PG rating are green. Regression lines have
been found for each group. (The black points are G-rated,
but there were too few to fit a line reliably.)
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a) Inwhat ways is the relationship between run times
and budgets similar for the three ratings groups?

b) How do the costs of R-rated movies differ from those
of PG-13 and PG rated movies? Discuss both the
slopes and the intercepts.

. Oakland passengers.

Exercises 215

c) The film King Kong, with a run time of 187 minutes, is
the red point sitting at the lower right. If it were omit-
ted from this analysis, how might that change your
conclusions about PG-13 movies?

The scatterplot below shows
the number of passengers departing from Oakland (CA)
airport month by month since the start of 1997. Time

is shown as years since 1990, with fractional years

used to represent each month. (Thus, June of 1997

is 7.5—halfway through the 7th year after 1990.)
www.oaklandairport.com
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Here's a regression and the residuals plot:

10.

Dependent variable is: Passengers

R-sguared = 71.1% s = 104330
Variable Coefficient
Constant 282584
Year-1990 59704.4

Residuals
o

8.0 10.0 12.0 14.0 16.0
Years Since 1990

a) Interpret the slope and intercept of the model.

b) What does the value of R? say about the model?

c) Interpret s, in this context.

d) Would you use this model to predict the numbers of
passengers in 2010 (YearsSince1990 = 20)? Explain.

e) There’s a point near the middle of this time span
with a large negative residual. Can you explain this
outlier?

Tracking hurricanes. Ina previous chapter, we
saw data on the errors (in nautical miles) made by the
National Hurricane Center in predicting the path

of hurricanes. The scatterplot on the next page shows
the trend in the 24-hour tracking errors since 1970
(www.nhc.noaa.gov).
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Dependent variable is: Error

R-squared = 63.0% s = 42.87
Variable Coefficient
Intercept 292.089
Years-1970 -5.22924

a) Interpret the slope and intercept of the model.

b) Interpret s, in this context.

c) The Center had a stated goal of achieving an average
tracking error of 125 nautical miles in 2009. Will they
make it? Why do you think so?

What if their goal were an average tracking error of

90 nautical miles?

e) What cautions would you state about your conclusion?

Unusual points. Each of the four scatterplots that fol-

low shows a cluster of points and one “stray” point. For

each, answer these questions:

1) In what way is the point unusual? Does it have high
leverage, a large residual, or both?

2) Do you think that point is an influential point?

3) If that point were removed, would the correlation be-
come stronger or weaker? Explain.

4) If that point were removed, would the slope of the re-
gression line increase or decrease? Explain.
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More unusual points. Each of the following scatter-

plots shows a cluster of points and one “stray” point. For

each, answer these questions:

1) In what way is the point unusual? Does it have high
leverage, a large residual, or both?

2) Do you think that point is an influential point?

3) If that point were removed, would the correlation be-
come stronger or weaker? Explain.

4) If that point were removed, would the slope of the re-
gression line increase or decrease? Explain.
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The extra point.
points at the left. Not surprisingly, the correlation for
these points is 7 = 0. Suppose one additional data point is
added at one of the five positions suggested below in
green. Match each point (a—e) with the correct new corre-
lation from the list given.

The scatterplot shows five blue data

1) —0.90 4) 0.05
2) —0.40 5) 0.75
3) 0.00
- .,
. .b..
e o
- [ d
e
°

The extra point revisited. The original five points in
Exercise 13 produce a regression line with slope 0. Match
each of the green points (a—e) with the slope of the line af-
ter that one point is added:

1) —045 4) 0.05
2) —0.30 5) 0.85
3) 0.00

What's the cause? Suppose a researcher studying
health issues measures blood pressure and the percentage
of body fat for several adult males and finds a strong pos-
itive association. Describe three different possible cause-
and-effect relationships that might be present.

What'’s the effect? A researcher studying violent behav-
ior in elementary school children asks the children’s par-
ents how much time each child spends playing computer
games and has their teachers rate each child on the level of
aggressiveness they display while playing with other
children. Suppose that the researcher finds a moderately
strong positive correlation. Describe three different possi-
ble cause-and-effect explanations for this relationship.

Reading. Tomeasure progress in reading ability, stu-
dents at an elementary school take a reading comprehen-
sion test every year. Scores are measured in “grade-level”
units; that is, a score of 4.2 means that a student is read-
ing at slightly above the expected level for a fourth
grader. The school principal prepares a report to parents
that includes a graph showing the mean reading score for
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19.

each grade. In his comments he points out that the strong
positive trend demonstrates the success of the school’s
reading program.

Reading Progress

K

Reading Level
O =N W e ooy

Avg.

Grade

a) Does this graph indicate that students are making sat-
isfactory progress in reading? Explain.

What would you estimate the correlation between
Grade and Average Reading Level to be?

If, instead of this plot showing average reading levels,
the principal had produced a scatterplot of the read-
ing levels of all the individual students, would you
expect the correlation to be the same, higher, or lower?
Explain.

Although the principal did not do a regression analy-
sis, someone as statistically astute as you might do
that. (But don’t bother.) What value of the slope of
that line would you view as demonstrating acceptable
progress in reading comprehension? Explain.

Grades. A college admissions officer, defending the col-
lege’s use of SAT scores in the admissions process, pro-
duced the graph below. It shows the mean GPAs for last
year’s freshmen, grouped by SAT scores. How strong is
the evidence that SAT Score is a good predictor of GPA?
What concerns you about the graph, the statistical
methodology or the conclusions reached?

b

=

C

NeX

d

=

SAT vs. GPA
3.25
s /./.—
2.75
2.5 _././’
2.25—
2 T T T T

900 10001100 1200 1300 1400 15001600
Combined SAT Score

Freshman GPA

Heating. After keeping track of his heating expenses
for several winters, a homeowner believes he can esti-
mate the monthly cost from the average daily Fahrenheit
temperature by using the model Cost = 133 — 2.13 Temp.
Here is the residuals plot for his data:

Exercises 217

$20
L]
[ ]
$10
° [ ]
= °
2w —— A
& 0° 10° 20° 80°  40° Temp
° L ]
-$10 °
[ ]
L ]
520

a) Interpret the slope of the line in this context.

b) Interpret the y-intercept of the line in this context.

¢) During months when the temperature stays around
freezing, would you expect cost predictions based
on this model to be accurate, too low, or too high?
Explain.

d) What heating cost does the model predict for a month
that averages 10°?

e) During one of the months on which the model was
based, the temperature did average 10°. What were
the actual heating costs for that month?

f) Should the homeowner use this model? Explain.

g) Would this model be more successful if the tempera-
ture were expressed in degrees Celsius? Explain.

20. Speed. How does the speed at which you drive affect

vour fuel economy? To find out, researchers drove a
compact car for 200 miles at speeds ranging from 35 to
75 miles per hour. From their data, they created the
model m = 32 — 0.1 Speed and created
this residual plot:
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a) Interpret the slope of this line in context.

b) Explain why it’s silly to attach any meaning to the
y-intercept.

c) When this model predicts high Fuel Efficiency, what
can you say about those predictions?

d) What Fuel Efficiency does the model predict when the
car is driven at 50 mph?

e) What was the actual Fuel Efficiency when the car was
driven at 45 mph?

f) Do you think there appears to be a strong association

between Speed and Fuel Efficiency? Explain.

Do you think this is the appropriate model for that as-

sociation? Explain.

Qo
-



218 CHAPTER 9

21.

22,

Regression Wisdom

Interest rates. Here’s a plot showing the federal rate
on 3-month Treasury bills from 1950 to 1980, and a regres-
sion model fit to the relationship between the Rate (in %)
and Years since 1950 (www.gpoaccess.gov/eop/).
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Dependent variable is: Rate

R-squared = 77.4% s = 1.239
Variable Coefficient
Intercept 0.640282
Year — 1950 0.247637

a) What is the correlation between Rate and Year?

b) Interpret the slope and intercept.

c) What does this model predict for the interest rate in
the year 2000?

d) Would you expect this prediction to have been accu-
rate? Explain.

Ages of couples 2003. The graph shows the ages of
both men and women at first marriage (Www.census.gov).
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Clearly, the pattern for men is similar to the pattern for
women. But are the two lines getting closer together?

Here’s a timeplot showing the difference in average age
(men’s age — women’s age) at first marriage, the regres-
sion analysis, and the associated residuals plot.
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Residuals

20 25 30 35
Predicted (M-W)

Dependent variable is: Age Difference

R-squared = 75.1% s = 0.2333
Variable Coefficient
Constant 35.0617

Year -0.018565

a) What is the correlation between Age Difference and
Year?

b) Interpret the slope of this line.

c) Predict the average age difference in 2015.

d) Describe reasons why you might not place much faith
in that prediction.

Interest rates revisited. In Exercise 21 you investi-
gated the federal rate on 3-month Treasury bills between
1950 and 1980. The scatterplot below shows that the trend
changed dramatically after 1980.
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Here’s a regression model for the data since 1980.

Dependent variable is: Rate

R-squared = 74.5% s= 1.630
Variable Coefficient
Intercept 21.0688

Year — 1950 -0.356578

a) How does this model compare to the one in Exercise 21?

b) What does this model estimate the interest rate to
have been in 2000? How does this compare to the rate
you predicted in Exercise 21?

¢) Do you trust this newer predicted value? Explain.

d) Given these two models, what would you predict the
interest rate on 3-month Treasury bills will be in 2020?

Ages of couples, again. Has the trend of decreasing
difference in age at first marriage seen in Exercise 22 got-
ten stronger recently? The scatterplot and residual plot
for the data from 1975 through 2003, along with a regres-
sion for just those years, are on the next page.
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Dependent variable is: Men — Women
R-Squared = 85.6% s =0.1869

Variable Coefficient
Intercept 4.88424
Year —0.029959

a) Whyis R? higher for the first model (in Exercise 22)?

b) Is this linear model appropriate for the post-1975
data? Explain.

c) What does the slope say about marriage ages?

d) Explain why it’s not reasonable to interpret the
y-intercept.

Gestation. For women, pregnancy lasts about

9 months. In other species of animals, the length of time
from conception to birth varies. Is there any evidence that
the gestation period is related to the animal’s lifespan?
The first scatterplot shows Gestation Period (in days) vs.
Life Expectancy (in years) for 18 species of mammals. The
highlighted point at the far right represents humans.
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a) For these data, r = 0.54, not a very strong relation-
ship. Do you think the association would be stronger
or weaker if humans were removed? Explain.

b) Is there reasonable justification for removing humans
from the data set? Explain.

26.

27.

Exercises 219

c) Here are the scatterplot and regression analysis for the
17 nonhuman species. Comment on the strength of the
association.
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Dependent variable is: Gestation
R-Squared = 72.2%

Variable Coefficient
Constant -39.5172
LifExp 15.4980

d) Interpret the slope of the line.

e) Some species of monkeys have a life expectancy of
about 20 years. Estimate the expected gestation period
of one of these monkeys.

Swim the lake 2006. People swam across Lake Ontario
42 times between 1974 and 2006 (www.soloswims.com).
We might be interested in whether they are getting any
faster or slower. Here are the regression of the crossing
Times (minutes) against the Year of the crossing and

the residuals plot:

Dependent variable is: Time

R-Squared = 1.3% s = 443.8
Variable Coefficient
Intercept —-8950.40
Year 5.14171
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a) What does the R? mean for this regression?

b) Are the swimmers getting faster or slower? Explain.

¢) The outlier seen in the residuals plot is a crossing by
Vicki Keith in 1987 in which she swam a round trip,
north to south, and then back again. Clearly, this swim
doesn’t belong with the others. Would removing it
change the model a lot? Explain.

Elephants and hippos. We removed humans from the
scatterplot in Exercise 25 because our species was an out-
lier in life expectancy. The resulting scatterplot (next page)
shows two points that now may be of concern. The point in
the upper right corner of this scatterplot is for elephants,
and the other point at the far right is for hippos.
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a) By removing one of these points, we could make the
association appear to be stronger. Which point?
Explain.

b) Would the slope of the line increase or decrease?

c) Should we just keep removing animals to increase the
strength of the model? Explain.

d) If we remove elephants from the scatterplot, the slope
of the regression line becomes 11.6 days per year. Do

you think elephants were an influential point? Explain.

28. Another swim 2006. In Exercise 26 we saw that Vicki
Keith’s round-trip swim of Lake Ontario was an obvious
outlier among the other one-way times. Here is the new
regression after this unusual point is removed:

Dependent variable is: Time

R-Squared = 4.1% s = 292.6
Variable Coefficient
Intercept -11048.7

Year 6.17081

a) In this new model, the value of s, is much smaller.
Explain what that means in this context.

b) Now would you be willing to say that the Lake
Ontario swimmers are getting faster (or slower)?

29. Marriage age 2003 revisited. Suppose you wanted to
predict the trend in marriage age for American women
into the early part of this century.

a) How could you use the data graphed in Exercise 1
to get a good prediction? Marriage ages in selected
years starting in 1900 are listed below. Use all or part
of these data to create an appropriate model for pre-
dicting the average age at which women will first
marry in 2010.

1900-1950 (10-yr intervals): 21.9, 21.6, 21.2, 21.3,21.5, 20.3
1955-2000 (5-yr intervals): 20.2, 20.2, 20.6, 20.8, 21.1, 22.0,
23.3,23.9,24.5,25.1

b) How much faith do you place in this prediction?
Explain.

¢) Do you think your model would produce an accurate
prediction about your grandchildren, say, 50 years
from now? Explain.

30. Unwed births. The National Center for Health Statis-
tics reported the data below, showing the percentage of
all births that are to unmarried women for selected years

Year
%

31.

between 1980 and 1998. Create a model that describes this
trend. Justify decisions you make about how to best use
these data.

1980‘1985 1990‘1991‘1992 1993‘1994‘1995‘1996 1997]1998
18.4 122.0 128.0 129.5 [30.1 [31.0 132.6 [32.2 [32.4 |32.4 |32.8

Life Expectancy 2004. Data from the World Bank for
26 Western Hemisphere countries can be used to examine
the association between female Life Expectancy and the
average Number of Children women give birth to

(http:// devdata.worldbank.org/data-query/).

Births/ | Life Births/ | Life
Country Woman | Exp. | Country Woman| Exp.
Argentina 23 74.6 | Guatemala 44 | 676
Bahamas 2.3 70.5 | Honduras 3.6 |682
Barbados 1.7 75.4 | Jamaica 24 70.8
Belize 3.0 71.9 | Mexico 22 |[751
Bolivia 37 64.5 | Nicaragua 3.2 70.1
Brazil 2.3 70.9 | Panama 2.6 751
Canada 15 79.8 | Paraguay 37 712
Chile 2.0 78.0 | Peru 28 [704
Colombia 2.4 72.6 | Puerto Rico 19 77.5
Costa Rica 24.9 78.7 | United States | 2.0 774
Dominican Uruguay 2.1 75.2
Republic 2.8 67.8 | Venezuela 2.7 |737
Ecuador 2.7 74.5 | Virgin
El Salvador 2.8 711 Islands 2.2 78.6

32.

33.

a) Create a scatterplot relating these two variables, and
describe the association.

b) Are there any countries that do not seem to fit the
overall pattern?

¢) Find the correlation, and interpret the value of R>.

d) Find the equation of the regression line.

e) Is the line an appropriate model? Describe what you
see in the residuals plot.

f) Interpret the slope and the y-intercept of the line.

g) If government leaders wanted to increase life ex-
pectancy in their country, should they encourage
women to have fewer children? Explain.

Tour de France 2007. We met the Tour de France data
set in Chapter 2 (in Just Checking). One hundred years
ago, the fastest rider finished the course at an average
speed of about 25.3 kph (around 15.8 mph). In 2005,
Lance Armstrong averaged 41.65 kph (25.88 mph) for the
fastest average winning speed in history.

a) Make a scatterplot of Avg Speed against Year. Describe
the relationship of Avg Speed by Year, being careful to
point out any unusual features in the plot.

b) Find the regression equation of Avg Speed on Year.

c) Are the conditions for regression met? Comment.

Inflation 2006. The Consumer Price Index (CPI) tracks
the prices of consumer goods in the United States, as
shown in the table on the next page (ftp://ftp.bis.gov). It



indicates, for example, that the average item costing

$17.70 in 1926 cost $201.60 in the year 2006.

Year CPI Year CPI

1914 10.0 1962 30.2
1918 15.1 1966 324
1922 16.8 1970 38.8
1926 17.7 1974 49.3
1930 16.7 1978 65.2
1934 134 1982 96.5
1938 14.1 1986 109.6
1942 16.3 1990 130.7
1946 19.5 1994 148.2
1950 24.1 1998 163.0
1954 26.9 2002 179.9
1958 28.9 2006 201.6

a) Make a scatterplot showing the trend in consumer
prices. Describe what you see.

b) Be an economic forecaster: Project increases in the cost
of living over the next decade. Justify decisions you
make in creating your model.
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34. Second stage 2007. Look once more at the data from
the Tour de France. In Exercise 32 we looked at the whole
history of the race, but now let’s consider just the post—
World War II era.

a) Find the regression of Avg Speed by Year only for years
from 1947 to the present. Are the conditions for regres-
sion met?

b) Interpret the slope.

¢) In1979 Bernard Hinault averaged 39.8 kph, while in
2005 Lance Armstrong averaged 41.65 kph. Which
was the more remarkable performance and why?

JUST CHECKING

Answers
1. Not high leverage, not influential, large residual
2. High leverage, not influential, small residual
3. High leverage, influential, not large residual




