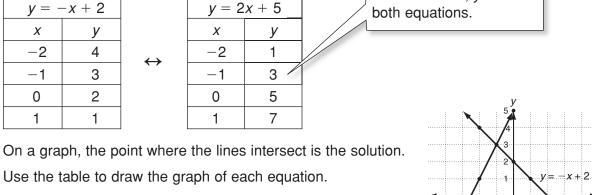
3-1 Using Graphs and Tables to Solve Linear Systems

A **linear system** of equations is a set of two or more linear equations. To **solve a linear system**, find all the ordered pairs (x, y) that make both equations true. Use a table and a graph to solve a system of equations.

 $\begin{cases} y + x = 2\\ y - 2x = 5 \end{cases}$ Solve each equation for $y \rightarrow \begin{cases} y = -x + 2\\ y = 2x + 5 \end{cases}$

Make a table of values for each equation.



The lines appear to intersect at (-1, 3).

Substitute (-1, 3) into the original equations to check.

y + x = 2 $3 + (-1) \stackrel{?}{=} 2$ 2 = 2√ y - 2x = 5 $3 - 2(-1) \stackrel{?}{=} 5$ 5 = 5√

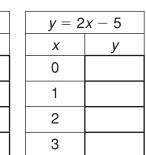
Solve the system using a table and a graph. Give the ordered pair that solves both equations.

1.
$$\begin{cases} x + y = 1\\ 2x - y = 5 \end{cases}$$
$$y = -x + 1$$
$$x$$
$$y$$

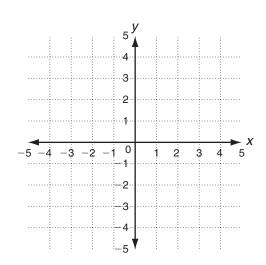
1

2

3



Solution:



-2 -1 0

4

-2

-5

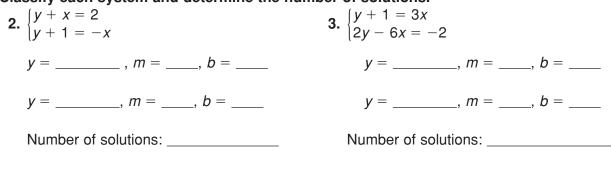
 $y = 2x + 5_{-3}$

When x = -1, y = 3 for

-4 -3

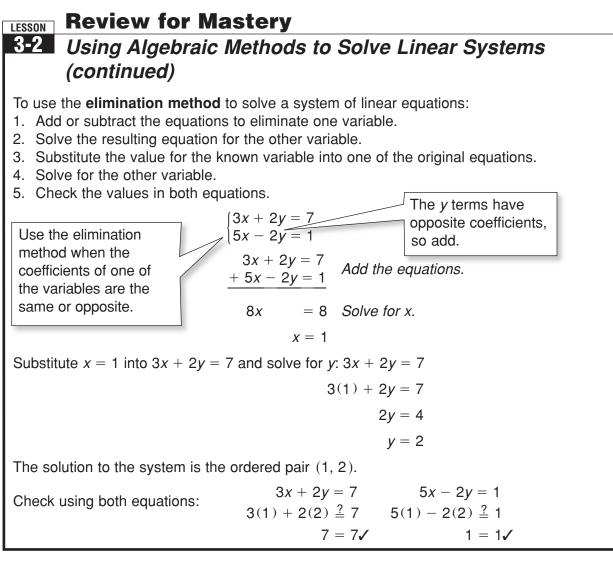
Review for Mastery LESSON 3-1 Using Graphs and Tables to Solve Linear Systems (continued) To classify a linear system: Remember: m = slopeStep 1 Write each equation in the form y = mx + b. and b = y-intercept. Compare the slopes and *v*-intercepts. Step 2 Step 3 Classify by the number of solutions of the system. **Exactly One Solution Infinitely Many Solutions No Solution** Independent Dependent Inconsistent The lines have different The lines have the same The lines have the **same slope** and different y-intercepts. The **slopes** and intersect at slope and y-intercept. Their graph is the same line. lines are parallel. one point. (x + y = 3)(2x = y - 1)(y + 2x = -3)x - y = 14v - 8x = 4v - 1 = -2xSolve each equation for y. Solve each equation for *y*. Solve each equation for y. (y = 2x + 1; m = 2, b = 1)(y = -2x - 3; m = -2, b = -3)(y = -x + 3; m = -1)v = 2x + 1; m = 2, b = 1y = -2x + 1; m = -2, b = 1y = x - 1; m = 1The slopes are different. The slopes and the The slopes are the same but the *y*-intercepts are the same. *y*-intercepts are different. The system has The system has infinitely many The system has no solution and one solution and is solutions and is dependent. is inconsistent. independent. 4v - 8x = 4y + 2x = --5 -4 -3 -2 --4 -3 -2 -1 -4 -3 -2 Ż ġ. -2x-2 3

Classify each system and determine the number of solutions.



ESSON Review for M	astery
3-2 Using Algebraid	Methods to Solve Linear Systems
 Solve one equation for one Substitute this expression i Solve for the other variable 	nto the other equation. known variable in the equation in Step 1.
 Solve for the other variable Check the values in both e 	
	(2x + y = 1)
Use the substitution	2x + y = 17
method when the coefficient of one of the	2x + (x + 2) = 17 Substitute $x + 2$ for y.
variables is 1 or -1 .	3x + 2 = 17 Simplify and solve for x.
	3x = 15
	<i>x</i> = 5
Substitute $x = 5$ into $y = x + 2$	
	y = 5 + 2
-	y = 7
The solution of the system is the	
Check using both equations:	$y = x + 2;$ $7 \stackrel{?}{=} (5) + 2;$ $7 = 7\checkmark$
	$2x + y = 17;$ $2(5) + 7 \stackrel{?}{=} 17;$ $17 = 17\checkmark$
Jse substitution to solve each 1. $\begin{cases} y = 2x - 5 \\ 3x + y = 10 \end{cases}$	a system of equations. 2. $\begin{cases} 3x + 2y = 1 \\ x - y = 2 \end{cases}$
Use $y = 2x - 5$.	Solve for <i>x</i> : $x - y = 2$.
3 <i>x</i> + = 10	x =
	$3(\) + 2y = 1$
Ordered pair solution:	Ordered pair solution:

Name _____ Date _____ Class _____



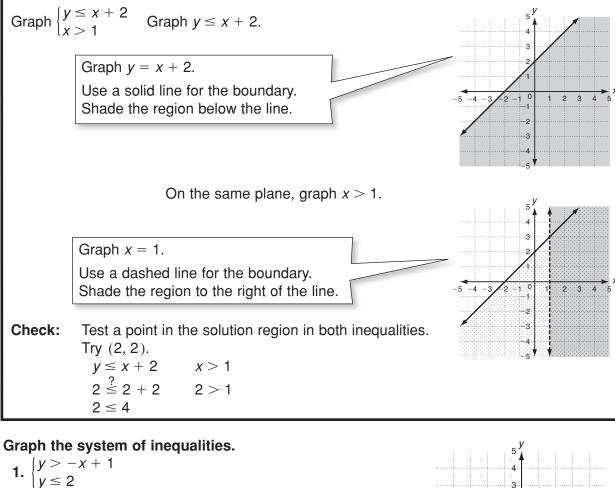
Use elimination to solve each system of equations.

3. $\begin{cases} 2x + y = 1 \\ -2x - 3y = 5 \end{cases}$	4. $\begin{cases} 3x + 4y = 13 \\ 5x - 4y = -21 \end{cases}$
2x + y = 1 $+(-2x - 3y = 5)$	3x + 4y = 13 + 5x - 4y = -21
-2 <i>y</i> =	
<i>y</i> =	x =
Ordered pair solution:	Ordered pair solution:

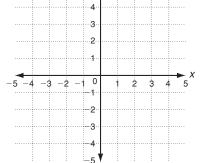
3-3 Solving Systems of Linear Inequalities

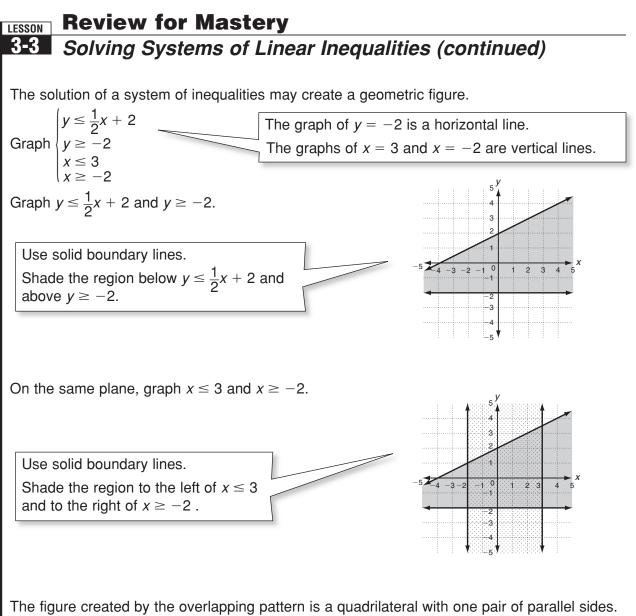
To use graphs to find the solution to a system of inequalities:

- 1. Draw the graph of the boundary for the first inequality. Remember to use a solid line for \leq or \geq and a dashed line for < or >.
- 2. Shade the region above or below the boundary line that is a solution of the inequality.
- 3. Draw the graph of the boundary for the second inequality.
- 4. Shade the region above or below the boundary line that is a solution of the inequality using a different pattern.
- 5. The region where the shadings overlap is the solution region.



- **a.** Shade ______ the line for y > -x + 1.
- **b.** Shade ______ the line for $y \le 2$.
- c. Check: _____
- d. Check:



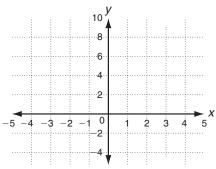


The figure is a trapezoid.

Graph the system of inequalities. Classify the figure created by the solution region.

2.
$$\begin{cases} y \le 2x + 1 \\ y \ge -x + 1 \\ x \le 3 \end{cases}$$

a. Shade ______ the line for $y \le 2x + 1$.
b. Shade ______ the line for $y \ge -x + 1$.
c. Shade to the ______ of the line for $x \le 3$.
d. The figure is a ______.

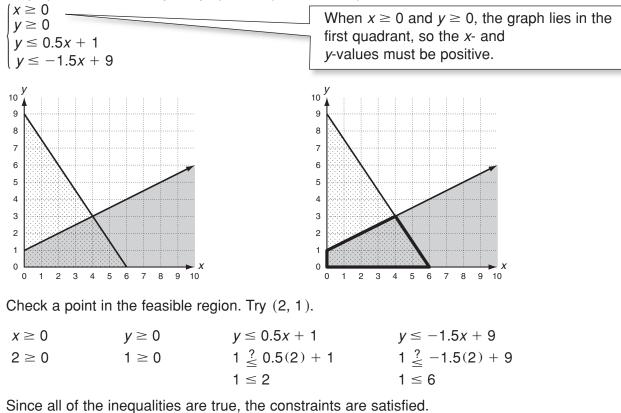


Name _		Date	Class	
LESSON	Review for Mastery			

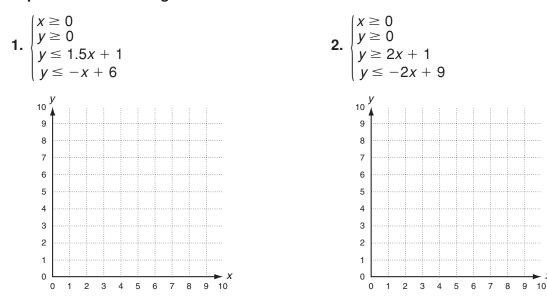
3-4 *Linear Programming*

Linear programming is used to maximize or minimize a function based on conditions that have to be met. These conditions are called **constraints**. The constraints are a system of inequalities. The graph of their solution is the **feasible region**.

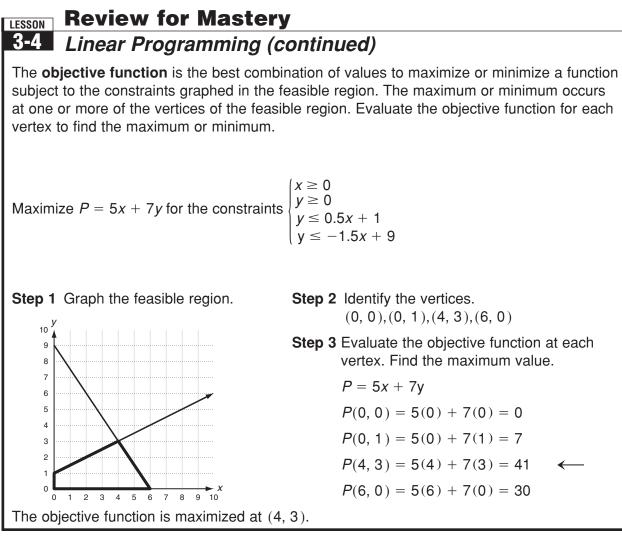
To graph the feasible region, graph the system of inequalities.



Graph each feasible region.



х

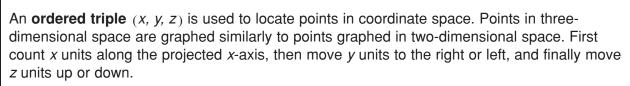


Solve using your graphs from Exercises 1–2 on the previous page.

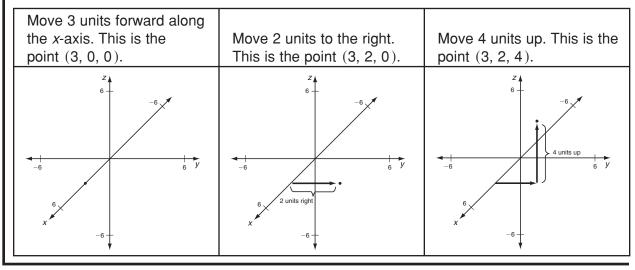
3. Maximize $P = 2x + 5y$ for:	4. Minimize $P = 3x + 6y$ for:
$\begin{cases} x \ge 0\\ y \ge 0\\ y \le 1.5x + 1\\ y \le -x + 6 \end{cases}$	$\begin{cases} x \ge 0 \\ y \ge 0 \\ y \ge 2x + 1 \\ y \le -2x + 9 \end{cases}$
Vertices:	_ Vertices:
P(,) =	
P(,) =	
P(,) =	
P(,) =	Minimum value at
Maximum value at	_

3-5 *Linear Equations in Three Dimensions*

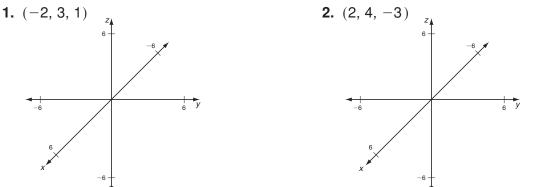
In a three-dimensional coordinate system, the x-axis projects out from the paper and the y- and z-axes lie in the plane of the paper.



To graph (3, 2, 4), start at the origin.



Graph each point in three-dimensional space.



Name

Review for Mastery LESSON **3-5** *Linear Equations in Three Dimensions (continued)*

In three-dimensional space, the graph of a linear equation is a plane. You can graph the plane by finding its x-, y-, and z-intercepts.

Graph 2x - 4y + 3z = 12.

Step 1 Find the intercepts.

Find the <i>x</i> -intercept.	Find the y-intercept.	Find the z-intercept.
Set $y = z = 0$.	Set $x = z = 0$.	Set $x = y = 0$.
2x - 4(0) + 3(0) = 12	2(0) - 4y + 3(0) = 12	2(0) - 4(0) + 3z = 12
2 <i>x</i> = 12	-4y = 12	3 <i>z</i> = 12
<i>x</i> = 6	<i>y</i> = -3	<i>z</i> = 4
The <i>x</i> -intercept is at (6, 0, 0).	The <i>y</i> -intercept is at $(0, -3, 0)$.	The <i>z</i> -intercept is at $(0, 0, 4)$.
Step 2 Plot each point. Use a dashed line to o the points. The triangl represents the plane.	е	-3, 0)

Graph each linear equation in three-dimensional space.

- **3.** 3x + 4y + 6z = 12*x*-intercept is at (4, ____, ____) *y*-intercept is at (____, 3, ____) *z*-intercept is at (____, ___, 2)
- **4.** 2x 2y + 5z = 10

⁶ (6, 0, 0)

x-intercept is at _____ y-intercept is at z-intercept is at _____

3-6 Solving Linear Systems in Three Variables

You know how to solve a system of two linear equations in two variables using the elimination method. The same method can be used to solve a system of three linear equations in three variables.

$$x - y + 2z = 8$$

$$2x + y - z = -2$$

$$x + 2y + z = 2$$

The first and second equations have opposite coefficients of γ . So adding these two equations will eliminate y.

$$x - y + 2z = 8$$
$$+2x + y - z = -2$$
$$3x + z = 6$$

Multiply the first equation by 2 and add to the third equation to eliminate y.

$$2x - 2y + 4z = 16$$

+ x + 2y + z = 2
$$3x + 5z = 18$$

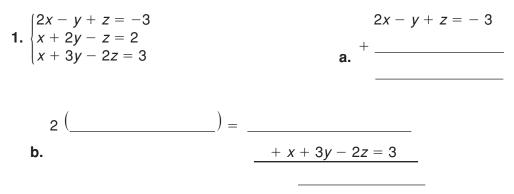
Now you have two equations in two variables. Solve using the elimination method for a system of two equations.

$$\begin{cases} 3x + z = 6\\ 3x + 5z = 18 \end{cases}$$

Solving this system gives x = 1 and z = 3. Substituting these values in any of the original equations gives y = -1.

So the solution is the ordered triple (1, -1, 3)

Show the steps you would use to eliminate the variable *z*.



c. Give the resulting system of two equations.

_____ Date _____ Class ____

Beview for M 3-6 Solving Linear	l astery Systems in Three Vari	iables (continued)	
Linear systems in three variables are classified by their solutions.			
Exactly One Solution Independent	Infinitely Many Solutions Dependent	No Solution Inconsistent	
Three planes intersect at one point.	Three planes intersect at a line.	All three planes never intersect.	
		x + y + z = 2 $x - y + z = 1$ $2x + 2z = 3$	
		-2x - 2z = -2 + 2x + 2z = 3 0 = 1	
Since 0 does not equal 1, the solution Classify: $\begin{cases} x + 2y + 4z = 3\\ 4x - 2y - 6z = 2\\ 2x - y - 3z = 1 \end{cases}$	Add the first and second equations.	x + 2y + 4z = 3 $4x - 2y - 6z = 2$ $5x -2z = 5$	
Multiply the third equation.	ation by 2. Add to	4x - 2y - 6z = 2 $+ x + 2y + 4z = 3$ $5x -2z = 5$	
Now you have a system with	two identical equations.	5x - 2z = 5 5x - 2z = 5	
Subtracting the equations gives	s 0 = 0.		
The system has infinitely many	solutions and is dependent.		

Classify each system and determine the number of solutions.

2. $\begin{cases} x + z = 0 \\ x + y + 2z = 3 \\ y + z = 2 \end{cases}$ 3.	$\begin{cases} y - z = 0\\ x - 3z = -1\\ -x + 3y = 1 \end{cases}$
--	---

